首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article describes the investigation of direct electron transfer (DET) between glucose oxidase (GOD) and the electrode materials in an enzyme-catalyzed reaction for the development of improved bioelectrocatalytic system. The GOD pedestal electrochemical reaction takes place by means of DET in a tailored Vulcan carbon paste electrode surfaces with GOD and chitosan (CS), allowing efficient electron transfer between the electrode and enzyme. The key understanding of the stability, biocatalytic activity, selectivity, and redox properties of these enzyme-based glucose biosensors is studied without using any reagents, and the properties are characterized using electrochemical techniques like cyclic voltammogram, amperometry, and electrochemical impedance spectroscopy. Furthermore, the interaction between the enzyme and the electrode surface is studied using ultraviolet–visible (UV–Vis) and Fourier transform infrared (FTIR) spectroscopy. The present glucose biosensor exhibited better linearity, limit of detection (LOD?=?0.37?±?0.02 mol/L) and a Michaelis–Menten constant of 0.40?±?0.01 mol/L. The proposed enzyme electrode exhibited excellent sensitivity, selectivity, reproducibility, and stability. This provides a simple “reagent-less” approach and efficient platform for the direct electrochemistry of GOD and developing novel bioelectrocatalytic systems.  相似文献   

2.
《Electroanalysis》2006,18(11):1131-1134
The direct electrochemistry of glucose oxidase (GOD) was revealed at a carbon nanotube (CNT)‐modified glassy carbon electrode, where the enzyme was immobilized with a chitosan film containing gold nanoparticles. The immobilized GOD displays a pair of redox peaks in pH 7.4 phosphate buffer solutions (PBS) with the formal potential of about ?455 mV (vs. Ag/AgCl) and shows a surface‐controlled electrode process. Bioactivity remains good, along with effective catalysis of the reduction of oxygen. In the presence of dissolved oxygen, the reduction peak current decreased gradually with the addition of glucose, which could be used for reagentless detection of glucose with a linear range from 0.04 to 1.0 mM. The proposed glucose biosensor exhibited high sensitivity, good stability and reproducibility, and was also insensitive to common interferences such as ascorbic and uric acid. The excellent performance of the reagentless biosensor is attributed to the effective enhancement of electron transfer between enzyme and electrode surface by CNTs, and the biocompatible environment that the chitosan film containing gold nanoparticles provides for immobilized GOD.  相似文献   

3.
Glucose oxidase (GOD) was encapsulated in chitosan matrix and immobilized on a glassy carbon electrode, achieving direct electron transfer (DET) reaction between GOD and electrode without any nano‐material. On basis of such DET, a novel glucose biosensor was fabricated for direct bioelectrochemical sensing without any electron‐mediator. GOD incorporated in chitosan films gave a pair of stable, well‐defined, and quasireversible cyclic voltammetric peaks at about ?0.284 (Epa) and ?0.338 V (Epc) vs. Ag/AgCl electrode in phosphate buffers. And the peak is located at the potentials characteristic of FAD redox couples of the proteins. The electrochemical parameters, such as midpoint potential (E1/2) and apparent heterogeneous electron‐transfer rate constants (ks) were estimated to ?0.311 V and 1.79 s?1 by voltammetry, respectively. Experimental results indicate that the encapsulated GOD retains its catalytic activity for the oxidation of glucose. Such a GOD encapsulated chitosan based biosensor revealed a relatively rapid response time of less than 2 min, and a sufficient linear detection range for glucose concentration, from 0.60 to 2.80 mmol L?1 with a detection limit of 0.10 mmol L?1 and electrode sensitivity of 0.233 μA mmol?1. The relative standard deviation (RSD) is under 3.2% (n=7) for the determination of practical serum samples. The biologic compounds probably existed in the sample, such as ascorbic acid, uric acid, dopamine, and epinephrine, do not affect the determination of glucose. The proposed method is satisfactory to the determination of human serum samples compared with the routine hexokinase method. Both the unique electrical property and biocompatibility of chitosan enable the construction of a good bio‐sensing platform for achieved DET of GOD and developed the third‐generation glucose biosensors.  相似文献   

4.
The direct electron transfer of glucose oxidase (GOD) was achieved based on the immobilization of GOD/colloidal gold nanoparticles on a glassy carbon electrode by a Nafion film. The immobilized GOD displayed a pair of well-defined and nearly reversible redox peaks with a formal potential (Eo ') of -0.434 V in 0.1 M pH 7.0 phosphate buffer solution and the response showed a surface-controlled electrode process. The dependence of Eo ' on solution pH indicated that the direct electron transfer reaction of GOD was a two-electron-transfer coupled with a two-proton-transfer reaction process. The experimental results also demonstrated that the immobilized GOD retained its electrocatalytic activity for the oxidation of glucose. So the resulting modified electrode can be used as a biosensor for detecting glucose.  相似文献   

5.
A simple and effective glucose biosensor based on immobilization of glucose oxidase (GOD) in graphene (GR)/Nafion film was constructed. The results indicated that the immobilized GOD can maintain its native structure and bioactivity, and the GR/Nafion film provides a favorable microenvironment for GOD immobilization and promotes the direct electron transfer between the electrode substrate and the redox center of GOD. The electrode reaction of the immobilized GOD shows a reversible and surface‐controlled process with the large electron transfer rate constant (ks) of 3.42±0.08 s?1. Based on the oxygen consumption during the oxidation process of glucose catalyzed by the immobilized GOD, the as‐prepared GOD/GR/Nafion/GCE electrode exhibits a linear range from 0.5 to 14 mmol·L?1 with a detection limit of 0.03 mmol·L?1. Moreover, it displays a good reproducibility and long‐term stability.  相似文献   

6.
Colloid Au (Au(nano)) with a diameter of about 10 nm was prepared and used in combination with dihexadecylphosphate (DHP) to immobilize glucose oxidase (GOD) onto the surface of a graphite electrode (GE). The direct electrochemistry of GOD confined in the composite film was investigated. The immobilized GOD displayed a pair of redox peaks with a formal potential of -0.475 mV in pH 7.0 O(2)-free phosphate buffers at scan rate of 150 mV s(-1). The GOD in the composite film retained its bioactivity and could catalyze the reduction of dissolved oxygen. Upon the addition of glucose, the reduction peak current of dissolved oxygen decreased, which could be developed for glucose determination. A calibration linear range of glucose was 0.5-9.3 mM with a detection limit of 0.1 mM and a sensitivity of 1.14 microA mM(-1). The glucose biosensor showed good reproducibility and stability. The general interferences that coexisted in human serum sample such as ascorbic acid and uric acid did not affect glucose determination.  相似文献   

7.
Peng Y  Wei CW  Liu YN  Li J 《The Analyst》2011,136(19):4003-4007
This paper describes the fabrication and application of a complex electrode--Nafion film coating ferrocenylalkanethiol (FcC(11)SH) and encapsulated glucose oxidase (GOD) on a gold electrode. FcC(11)SH is employed as a mediator enabling the electron transfer between GOD and the electrode, GOD is encapsulated in polyacrylamide gel to improve the stability of the enzyme, and the Nafion film is coated on the modified electrode to eliminate interferents such as ascorbic acid, uric acid and acetaminophen in amperometric glucose detection. It is noticed that such a complex electrode exhibits excellent catalytic activity for glucose oxidation, and preserves the native structure of GOD and therefore its enzymatic activity. The encapsulated GOD retains more than 80% of its original biocatalytic activity even after 24 days, much longer than that of naked GOD molecules attached directly to the electrode. The oxidation peak current at the modified electrode shows a linear relationship with the glucose concentration in the range from 0.05 to 20 mM with a detection limit of 2.4 μM. In addition, the electrode displays a rapid response and good reproducibility for glucose detection, and has been successfully employed for glucose detection in blood plasma samples.  相似文献   

8.
王琨琦  朱琳  邢巍 《电化学》2008,14(2):121
使用简单的方法将葡萄糖氧化酶(GOD)固定在介孔碳(Mesoporous Carbon)修饰的玻碳电极(GCE)表面.循环伏安测试表明:修饰电极上的GOD在0.1mol/L磷酸缓冲溶液(PBS)(pH=7.1)中发生了准可逆的氧化还原反应,其克式量电位为-0.4294 V,并且该电化学反应包含有两电子两质子的传递.在氮气饱和的情况下,以羧基二茂铁作为电子传递中介体,GOD能将葡萄糖彻底催化氧化,可见介孔碳修饰电极上的GOD保持了其生物学活性.  相似文献   

9.
We have investigated the direct electron transfer (DET) promoted by carbon nanotubes (CNTs) on an electrode containing immobilized glucose oxidase (GOx) with the aim to develop a third-generation glucose biosensor and a mediator-free glucose biofuel cell anode. GOx was immobilized via chitosan (CS) on a glassy carbon electrode (GCE) modified with multi-walled carbon nanotubes (MWCNTs). Cyclic voltammetric revealed that the GOx on the surface of such an electrode is unable to simultaneously demonstrate DET with the electrode and to retain its catalytic activity towards glucose, although the MWCNTs alone can promote electron transfer between GOx and electrode. This is interpreted in terms of two types of GOx on the surface, the distribution and properties of which are quite different. The first type exhibits DET capability that results from the collaboration of MWCNTs and metal impurities, but is unable to catalyze the oxidation of glucose. The second type maintains its glucose-specific catalytic capability in the presence of a mediator, which can be enhanced by MWCNTs, but cannot undergo DET with the electrode. As a result, the MWCNTs are capable of promoting the electron transfer, but this is without value in some mediator-free applications such as in third-generation glucose biosensors and in mediator-free anodes for glucose biofuel cells.
Graphical Abstract
Two types of glucose oxidase (GOx) are immobilized on the surface of multi-walled carbon nanotubes (MWCNTs)-modified electrode. DET (direct electron transfer)-GOx exhibits DET ability deriving from the collaboration of MWCNTs and metal impurities, is unable to electrooxidize glucose. GCA (glucose-specific catalytic activity)-GOx cannot undergo DET with the electrode.  相似文献   

10.
将1-丁基-3-甲基咪唑四氟硼酸盐([BMIm][BF4])、N,N-二甲基甲酰胺(DMF)与葡萄糖氧化酶(GOD)的混合物修饰于三维有序大孔(3DOM)金膜电极上,构建了一种新型的葡萄糖传感器.固定的GOD在pH7.0的磷酸缓冲液(PBS)中展现出一对可逆性好的氧化还原峰,这归因于GOD的活性中心黄素腺嘌呤二核苷酸(FAD)的直接电化学行为.研究表明,离子液体(IL)、DMF以及3DOM金膜对GOD的直接电化学都起到了重要的作用.3DOM金膜修饰电极作为基底提高了酶的负载量,加速了GOD与电极表面的电子传递;IL的应用增加了固定GOD的电化学活性;DMF与IL、GOD的协同作用更好地保持了GOD的生物活性.固定在电极表面的GOD对葡萄糖显示出良好的催化性能,其检测线性范围为10~125nmol/L,检测限为3.3nmol/L(S/N=3),酶催化反应的表观米氏常数Km为0.018mmol/L.  相似文献   

11.

In this report, we conceptually distinguish direct electron transfer (DET) from mediator-involved (mediated) electron transfer (MET) in a glucose/oxygen-based fuel cell (FC) using an electrode potential/Fermi energy diagram. The anodic and cathodic overvoltages deviating from the equilibrium potential (the Fermi energy of redox electrons) were taken into account for the organic/inorganic redox couple and the mental experiments were performed during the trip of redox electrons through the interface between the anodic/cathodic organic/inorganic active mass and electrodes to propose electron transfer pathway. The proposed schema (inequality (MET) and equality in Fermi energy (DET)) should be experimentally corroborated by measurement of the electromotive force (emf). The MET is of technological significance in the presence of an electron mediator of the redox couple, despite a slightly narrower emf estimated between two electrodes by roughly 1 to 2 mV at most than the DET, in view of the thermodynamic and electro-kinetic viewpoints.

  相似文献   

12.
A novel type of glucose sensor was fabricated based on a glucose oxidase (GOD)-N,N-dimethtylformamide (DMF)-[BMIm][BF4] composites modified three-dimensional ordered macroporous (3DOM) gold film electrode. The immobilized GOD exhibits a pair of well-defined reversible peaks in 50 mM pH 7.0 phosphate buffer solutions (PBS), which could be attributed to the redox of flavin adenine dinucleotide (FAD) in GOD. The research results show that ionic liquid ([BMIm][BF4]), DMF and 3DOM gold film are crucial for GOD to exhibit a pair of stable and reversible peaks. It is believed that the large active area of 3DOM gold film can increase the amount of immobilized GOD. Simultaneously, the application of IL enhances the stability of GOD and facilitates the electron transfer between GOD and the electrode. The synergetic effect of DMF can help the GOD to maintain its bioactivity better. GOD immobilized on the electrode exhibits the favorable electrocatalytic property to glucose, and the prepared sensor has a linear range from 10 to 125 nM with a detection limit of 3.3 nM at a signal-to-noise ratio of 3σ. The apparent K m (Michaelis- Menten constant) for the enzymatic reaction is 0.018 mM.  相似文献   

13.
《Analytical letters》2012,45(7):746-753
In this work, we report the direct electrochemistry of glucose oxidase (GOD) observed at a gold electrode modified with graphene nanosheets. Initially, graphene nanosheets were synthesized and conjugated to the enzyme GOD and immobilized on to a gold electrode surface. Cyclic voltammetry was then performed using Gold-Graphene-GOD modified electrodes in a pH 7.2 phosphate buffered saline (PBS). A pair of well-defined redox peaks was obtained for GOD with the reduction peak centered at +180 mV and a peak separation of 70 mV in PBS under physiological conditions. Moreover, the electron transfer rate of GOD redox reaction was greatly enhanced and the peak potential was found to be pH dependent at the graphene-GOD surface. Further, the performance of the Gold-Graphene-GOD was found to be stable and excellent under physiological conditions indicating the possibility of employing this platform for real time analysis. The observed results indicated that the 2D-graphene holds great promise for conjugation ability with a variety of enzymes. Further, our results also confirmed that graphene is capable of holding the enzyme GOD in a favorable position and retains its original structure and functionality that are essential for biosensing.  相似文献   

14.
付萍  袁若  柴雅琴  殷冰  曹淑瑞  陈时洪  李宛洋 《化学学报》2008,66(15):1796-1802
在金电极表面修饰一层L-半胱氨酸,再利用静电吸附作用固定纳米普鲁士蓝(nano-PB),然后利用壳聚糖-纳米金复合膜将葡萄糖氧化酶(GOD)固定于修饰电极表面,制成新型的葡萄糖传感器.通过交流阻抗技术,循环伏安法和计时电流法考察了电极的电化学特性.在优化的实验条件下,该传感器在葡萄糖浓度为3.0×10-6~1.0×10-3 mol/L范围内有线性响应,检测下限为1.6×10-6 mol/L.此外该传感器具有响应快、稳定性好和选择性良好的特点,能有效排除常见干扰物质如抗坏血酸、尿酸等对测定的影响.  相似文献   

15.
The direct electron transfer of glucose oxidase (GOD) immobilized on a composite matrix based on porous carbon nanofibers (PCNFs), room-temperature ionic liquid (RTIL), and chitosan (CHIT) underlying on a glassy carbon electrode was achieved. The combination of the PCNFs, RTIL, and CHIT provided a suitable microenvironment for GOD to transfer electron directly. In deaerated buffer solutions (pH 7.0), the cyclic voltammetry of the GOD/PCNFs/RTIL/CHIT composite films showed a pair of well-defined redox peaks with the formal potential of −0.45 V (vs. SCE). The synergistic effort of the PCNFs, RTIL, and CHIT also promoted the stability of GOD in the composite film and retained its bioactivity.  相似文献   

16.
The direct electrochemistry of glucose oxidase (GOD) immobilized on a hexagonal mesoporous silica modified glassy carbon electrode was investigated. The adsorbed GOD displayed a pair of redox peaks with a formal potential of -417 mV in 0.1 M pH 6.1 phosphate buffer solution (PBS). The response showed a diffusion-controlled electrode process with a two-electron transfer coupled with a two-proton transfer reaction process. GOD immobilized on a hexagonal mesoporous silica retained its bioactivity and stability. In addition, the immobilized GOD could electrocatalyze the oxidation of glucose to gluconlactone by taking ferrocene monocarboxylic acid (FMCA) as a mediator in N(2) saturated solutions, indicating that the electrode may have the potential application in biosensors to analyze glucose. The sensor could exclude the interference of commonly coexisted uric acid, p-acetaminophenol and ascorbic acid and diagnose diabetes very fast and sensitively. This work demonstrated that the mesoporous silica provided a novel matrix for protein immobilization and the construction of biosensors.  相似文献   

17.
《Analytical letters》2012,45(11):2039-2053
Abstract

Biphenol (4,4′-dihydroxy-biphenyl) was found to be an electron transfer mediator for glucose oxidase (GOD) of Aspergillus niger. At a glassy carbon electrode, a 1.44×10-4 M solution of biphenol in phosphate-buffered saline (PBS) at pH 7.4 gives an quasi-reversible, one-electron, pH-sensitive couple at 255mV (relative to the standard calomel electrode). The apparent second-order rate constant for electron transfer from reduced GOD to oxidized biphenol was determined to be 3×105 M-1 s-1. When biphenol and GOD are cophysiadsorbed on a graphite electrode immersed in PBS and held at 400mV, a glucose-dependent current response is noted. In addition to the predominant quasi-reversible biphenol redox couple, repetitive cyclic voltammetry at a graphite electrode gave rise to a polybiphenol polymer; this is most marked at a pH above the biphenol pKa of about 9.5. At pH 7.4, the polymerization is less significant. Polybiphenol formed either side of the pKa remains electrochemically active (E°app. = 245mV) but no longer mediates GOD.  相似文献   

18.
将稀土纳米材料Er2O3用于构建葡萄糖生物传感器。Er2O3和氧化石墨烯形成复合基底,将葡萄糖氧化酶(GOD)固载在玻碳电极表面。首先利用SEM和XRD技术对所制备的Er2O3和氧化石墨烯纳米材料进行表征。利用EIS和CV对整个生物传感器制备过程进行表征。Er2O3的存在能有效的保持GOD的生物活性并加速其电子传递速率。由于Er2O3和氧化石墨烯之间的协同效应,使得制备的传感器具有一对良好的氧化还原峰,证实GOD和电极之间的直接传递性能。当用于对葡萄糖的电催化氧化时,传感器的CV响应随着葡萄糖浓度的增加而变弱。在葡萄糖浓度为1~10 mmol·L-1范围内,CV响应值与葡萄糖浓度成线性关系。此外,传感器具有好的稳定性和重现性。  相似文献   

19.
研究了芦丁和抗坏血酸在碳纳米管与聚电解质复合材料修饰电极(PDDA/SWCNTs/GC)上的电化学行为.循环伏安测试结果表明,在该修饰电极上芦丁的电子传递反应受吸附控制.在碳纳米管和PDDA的共同作用下,芦丁和抗坏血酸的氧化峰电位分离大于200 mV.利用微分脉冲伏安法测定了不同浓度芦丁的电流响应,线性范围为2.5~110μmol.L-1,检出限0.5μmol.L-1.即使抗坏血酸浓度较高时,氧化峰电流与芦丁的浓度仍然呈良好的线性关系.该修饰电极制作简便,可应用于药物中芦丁含量的直接检测.  相似文献   

20.
将稀土纳米材料Er2O3用于构建葡萄糖生物传感器。Er2O3和氧化石墨烯形成复合基底,将葡萄糖氧化酶(GOD)固载在玻碳电极表面。首先利用SEM和XRD技术对所制备的Er2O3和氧化石墨烯纳米材料进行表征。利用EIS和CV对整个生物传感器制备过程进行表征。Er2O3的存在能有效地保持GOD的生物活性并加速其与电极之间的电子传递。由于Er2O3和氧化石墨烯之间的协同效应,使得制备的传感器在CV图中呈现一对明显的氧化还原峰,证实GOD和电极之间的直接电子传递性能。当用于对葡萄糖的电催化氧化时,传感器的CV响应随着葡萄糖浓度的增加而变弱。在葡萄糖浓度为1~10 mmol·L-1范围内,CV响应值与葡萄糖浓度成线性关系。此外,传感器具有好的稳定性和重现性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号