首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On-line preconcentration system for the selective, sensitive and simultaneous determination of chromium species was investigated. Dual mini-columns containing chelating resin were utilized for the speciation and preconcentration of Cr(III) and Cr(VI) in water samples. In this system, Cr(III) was collected on first column packed with iminodiacetate resin. Cr(VI) in the effluent from the first column was reduced to Cr(III), which was collected on the second column packed with iminodiacetate resin. Hydroxyammonium chloride was examined as a potential reducing agent for Cr(VI) to Cr(III).The effects of pH, sample flow rate, column length, and interfering ions on the recoveries of Cr(III) were carefully studied. Five millilitres of a sample solution was introduced into the system. The collected species were then sequentially washed by 1 M ammonium acetate, eluted by 2 M nitric acid and measured by ICP-AES. The detection limit for Cr(III) and Cr(VI) was 0.08 and 0.15 μg l−1, respectively. The total analysis time was about 9.4 min.The developed method was successfully applied to the speciation of chromium in river, tap water and wastewater samples with satisfied results.  相似文献   

2.
Kubán P  Kubán P  Kubán V 《Electrophoresis》2003,24(9):1397-1403
A sensitive, rapid and inexpensive capillary electrophoretic method for the determination of Cr(III) and Cr(VI) species is presented. The method is based on the dual opposite end injection principle and contactless conductometric detection. The sample containing cationic and anionic species is injected into the opposite ends of the separation capillary and after the high voltage is applied, the analytes migrate towards the capillary center, where the cell of a contactless conductivity detector is placed. The method does not require any sample pretreatment, except dilution with deionized water. The separation of Cr(III), Cr(VI) and other common inorganic anions and cations is achieved in less than 4 min. The parameters of the separation electrolyte solution, such as pH and concentration of L-histidine, were optimized. Best results were achieved with electrolyte solution consisting of 4.5 mM L-histidine, adjusted to pH 3.40 with acetic acid. The detection limits achieved for Cr(III) and Cr(VI) were 10 and 39 microg.L(-1), respectively. The repeatability of migration times and peak areas was better than 0.3% and 2.8%, respectively. The developed method was applied to the analyses of rinse water samples from the galvanic industry. The results for the determination of Cr(III) and Cr(VI) were in good agreement with the results obtained by certified differential spectrophotometric method using diphenylcarbazide (CN 83 0520-40) and with the results for the total chromium concentrations determined by electrothermal atomic absorbance spectrometry (ET-AAS) and inductively coupled plasma-mass spectrometry (ICP-MS).  相似文献   

3.
A method for the simultaneous determination of chromium(III) and chromium(VI) by capillary electrophoresis (CE) has been developed. The chromium(III) has been chelated with 1,2-cyclohexanediaminetetraacetic acid (CDTA) in order to impart a negative charge and similar mobility to both the chromium(III) and the chromium(VI) species. The effects of the amount of the reagent, pH and heating time required to complete the complexation have been studied. Factors affecting the CE behaviour such as the polarity of electrodes and the pH of electrophoretic buffer have been investigated. The separated species have been monitored by direct UV measurements at 214 nm. The detection limits achieved are 10 microg/l for Cr(VI) and 5 microg/l for Cr(III) and linear detector response is observed up to 100 mg/l. The procedure has been applied to the determination of both chromium species in industrial electroplating samples and its accuracy was checked by comparing the results (as total chromium) with those of atomic absorption spectrometry. No interference occurred from transition metal impurities under optimized separation conditions. The method is also shown to be feasible for determining Cr(III) as well as other metal ions capable to form complexes with CDTA (like iron(III), copper(II), zinc(II) and manganese(II)) in pharmaceutical preparations of essential trace elements.  相似文献   

4.
High‐performance liquid chromatography coupled with inductively coupled plasma mass spectrometry was employed for the determination of chromium species. For simultaneous separation of both chromium species by an anion‐exchange column, ethylenediaminetetraacetic acid was induced to form negatively charged complex with Cr(III) normally. Cr(III) chelating reactions are known to be slow, so a high temperature and long reaction time are needed to ensure the completion of the complexing reaction. However, the stability and interconversion of chromium species during the complexing reaction have not been studied earlier. The main aim of this work was to optimize and investigate complexing reaction conditions between ethylenediaminetetraacetic acid and Cr(III). Through optimizing conditions, the reaction will be finished completely in 15 min at pH 7 and 70°C without any obvious interconversion between Cr(VI) and Cr(III). By compromising analysis time, chromatographic resolution, and sensitivity, 60 mM NH4NO3 as competing ion concentration and 1.2 mL/min as flow rate have been selected for real‐sample application. Detection limits for Cr(VI) and Cr(III) were 0.051 and 0.078 μg/L, respectively. The proposed method was used for the determination of chromium species in tap and surface water samples with an acceptable range of spiked recoveries of 95–109%.  相似文献   

5.
A sensitive and simple method for determination of chromium species after separation and preconcentration by solid phase extraction (SPE) has been developed. For the determination of the total concentration of chromium in solution, Cr(VI) was efficiently reduced to Cr(III) by addition of hydroxylamine and Cr(III) was preconcentrated on a column of immobilised ferron on alumina. The adsorbed analyte was then eluted with 5?mL of hydrochloric acid and was determined by flame atomic absorption spectrometery. The speciation of chromium was affected by first passing the solution through an acidic alumina column which retained Cr(VI) and then Cr(III) was preconcentrated by immobilised ferron column and determined by FAAS. The concentration of Cr(VI) was determined from the difference of concentration of total chromium and Cr(III). The effect of pH, concentration of eluent, flow rate of sample and eluent solution, and foreign ions on the sorption of chromium (III) by immobilised ferron column was investigated. Under the optimised conditions the calibration curve was linear over the range of 2–400?µg?L?1 for 1000?mL preconcentration volume. The detection limit was 0.32?µg?L?1, the preconcentration factor was 400, and the relative standard deviation (%RSD) was 1.9% (at 10?µg?L?1; n?=?7). The method was successfully applied to the determination of chromium species in water samples and total chromium in standard alloys.  相似文献   

6.
A method for the simultaneous determination of chromium(III) and chromium(VI) by capillary electrophoresis (CE) has been developed. The chromium(III) has been chelated with 1,2-cyclohexanediaminetetraacetic acid (CDTA) in order to impart a negative charge and similar mobility to both the chromium(III) and the chromium(VI) species. The effects of the amount of the reagent, pH and heating time required to complete the complexation have been studied. Factors affecting the CE behaviour such as the polarity of electrodes and the pH of electrophoretic buffer have been investigated. The separated species have been monitored by direct UV measurements at 214 nm. The detection limits achieved are 10 g/l for Cr(VI) and 5 g/l for Cr(III) and linear detector response is observed up to 100 mg/l. The procedure has been applied to the determination of both chromium species in industrial electroplating samples and its accuracy was checked by comparing the results (as total chromium) with those of atomic absorption spectrometry. No interference occurred from transition metal impurities under optimized separation conditions. The method is also shown to be feasible for determining Cr(III) as well as other metal ions capable to form complexes with CDTA (like iron(III), copper(II), zinc(II) and manganese(II)) in pharmaceutical preparations of essential trace elements.  相似文献   

7.
A simple and sensitive method has been developed for species selective determination of chromium(III) and chromium(VI) in water by electrothermal atomic absorption spectrometry. The procedure is based on selective absorption of Cr(III) on a cellulose micro column (pH 11, 0.5 mol L(-1) NaCl). Total chromium was subsequently determined after appropriate reduction of Cr(VI) to Cr(III). Recoveries of more than 97% were found. A concentration factor of 100 was achieved. The relative standard deviations (n=10) at the 40 ng L(-1) level for chromium(III) and chromium(VI) were 2.3% and 1.8% and corresponding limits of detection (based on 36) were 1.8 ng L(-1) and 5.1 ng L(-1), respectively. No interference effects have been observed from other investigated species and the method has been successfully applied to natural water samples.  相似文献   

8.
A simple method has been proposed for the determination of chromium species by high-performance liquid chromatography (HPLC) after preconcentration by the ionic liquid, 1-butyl-3-methyimidazolium hexafluorophosphate ([C4MIM][PF6]). The simultaneous preconcentration of Cr(VI) and Cr(III) in wastewater was achieved with ammonium pyrrolidinedithiocarbamate (APDC) as the chelating agent and the ionic liquid [C4MIM][PF6] as the extractant. Baseline separation of the APDC chelates of Cr(III) and Cr(VI) was realised on a RP-C18 column using a mixture of methanol–acetonitrile–water (53:14:33, v/v) as the mobile phase at a flow rate of 1.0 mL min− 1. The influences of several variables on the complexation and extraction were evaluated: pH, reaction time, APDC concentration and metal ion interference. Our results showed that when the linear concentration of Cr(VI) and Cr(III) ranged from 25 to 200 μg L− 1, their linear correlation coefficients were between 0.9977 and 0.9978, their recoveries ranged from 91.8% to 95.8% and their relative standard deviations (n = 3) were between 0.31% and 1.8%. Common metal ions in water did not interfere with the determination. This method is a simple, fast, accurate, highly stable and selective method and has successfully been applied to the speciation of chromium in wastewater.  相似文献   

9.
A simple method was developed for the simultaneous determination of Cr(III) and Cr(VI) by capillary zone electrophoresis (CZE), where Cr(III) was chelated with ligands to form anionic complexes. Nitrilotriacetic acid, N-2-hydroxyethylenediaminetriacetic acid, ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, and 2,6-pyridinedicarboxylic acid (PDCA) were investigated as Cr(III) complexing ligands. Of all the ligands studied, 2,6-PDCA with Cr(III) gave the largest UV response and high selectivity for Cr(III). In addition, the condition for pre-column derivatization, including pH, concentration ratio [Cr(III)/2,6-PDCA] and the stability of Cr(III) complexes were also examined. The separation of anionic forms of Cr(III) and Cr(VI) was achieved using co-CZE with UV detection at 185 nm. The electrolyte contained 30 mM phosphate, 0.5 mM tetradecyltrimethylammonium bromide, 0.1 mM 2,6-PDCA and 15% (v/v) acetonitrile at pH 6.4. The detection limits were 2 microM for Cr(III) and 3 microM for Cr(VI) and linear plots were obtained in a concentration range of 5-200 microM. The utility of the method was demonstrated for the determination of Cr(III) and Cr(VI) in contaminated soils.  相似文献   

10.
Ion-pair chromatography (IPC) with conductometric detection was investigated as a precise and selective analytical method for the determination of chromium in electro-plating solutions and waste waters. Chromatographic parameters were optimized for separation of Cr(VI) and SO(2-)(4). The analytical column (100 x 6 mm) was packed with 10 mum silasorb C(18) (Czechoslovakia). Tetrabutylammonium butyrate (TBAB), at pH 7.0 in acetonitrile-water (18:82 v/v) mixture, was used as the eluent. Two samples of solution are taken for the analysis. In the first of them the amount of Cr(VI) is determined, in the second one Cr(III) is oxidized to Cr(VI) with H(2)O(2) in alkaline medium and the total amount of Cr is determined. From the difference of the two obtained results the concentration of Cr(III) is calculated. The detection limit of Cr(VI) is 0.1 mug/ml and the relative standard deviation (at the 1.0 mug/ml) is 4.0%. The IPC results for chromium agreed closely with these obtained by spectrophotometry.  相似文献   

11.
Mehra HC  Frankenberger WT 《Talanta》1989,36(9):889-892
Single-column ion-chromatography (SCIC) was investigated as a routine, rapid, precise and selective analytical method for the determination of chromium(VI) in aqueous extracts of soil and sewage sludge. Chromatographic parameters were optimized for determination of Cr(VI), NO(-)(3) and SO(2-)(4). A low-capacity resin-based column was used for the separation and the anions were determined by conductometric detection. p-Hydroxybenzoic acid (5mM) at pH 8.5 was used as the eluent. The limit of detection, defined as S/N = 3, was 92 mug/l. The resolution between Cr(VI) and SO(2-)(4) was 2.8, the precision ranged from 0.9% for NO(-)(3) to 2.0% for Cr(VI) with a 500-mul injection. The SCIC results for Cr(VI) agreed closely with those obtained by inductively coupled argon-plasma emission and spectrophotometry.  相似文献   

12.
The simultaneous determination of As(III), As(V), monomethylarsenic acid (MMA), dimethylarsinic acid (DMA) and Cr(VI) in fresh water has been carried out by coupling an anion-exchange column to an inductively coupled plasma-mass spectrometer. Optimisation of chromatographic conditions led to baseline separation of signals from the five species in approximately 9 min using gradient elution. Detection limits were 0.02-0.05 microg As l(-1) and 5.5 microg Cr l(-1). Repeatability was 2-3% for arsenic species and higher, i.e., 8%, for Cr(VI) due to the higher background for this species. Arsenic species and hexavalent chromium stability in surface water samples was evaluated, and storage conditions were set to 1 day at 4 degrees C in polyethylene flasks (without acidification) in order to avoid As(III)-As(V) conversions. The method was applied to the analysis of surface water.  相似文献   

13.
Nanometer titanium dioxide immobilized on silica gel (immobilized nanometer-scale TiO2 particles) was prepared by a sol-gel method and characterized by X-ray diffraction and scanning electron microscopy. The adsorptive behavior of Cr(III) and Cr(VI) on immobilized nanometer TiO2 was assessed. Cr(III) was selectively sorbed on immobilized nanometer TiO2 in the pH range of 7-9, while Cr(VI) was found to remain in solution. A sensitive and selective method has been developed for the speciation of chromium in water samples using an immobilized nanometer TiO2 microcolumn and inductively coupled plasma atomic emission spectrometry. Under optimized conditions (pH 7.0, flow rate 2.0 mL/min), Cr(III) was retained on the column, then eluted with 0.5 mol/L HNO3 and determined by ICP-AES. Total chromium was determined after the reduction of Cr(VI) to Cr(III) by ascorbic acid. The adsorption capacity of immobilized nanometer TiO2 for Cr(III) was found to be 7.04 mg/g. The detection limit for Cr(III) was 0.22 ng/mL and the RSD was 3.5% (n = 11, c = 100 ng/ mL) with an enrichment factor of 50. The proposed method has been applied to the speciation of chromium in water samples with satisfactory results.  相似文献   

14.
A new method for the simultaneous chromatographic separation and determination of arsenite, arsenate, mono-methylarsonic acid, dimethylarsinic acid, selenite, selenate and hexavalent chromium in water is presented. Speciation was achieved by on-line coupling of anion-exchange LC and inductively coupled plasma mass spectrometry (ICP-MS). Optimisation of the chromatographic conditions led to baseline separation of the seven species in 14 min using gradient elution with NH4NO3 20 mM, pH 8.7-NH4NO3 60 mM, pH 8.7 as mobile phase. Detection limits are in the range 40-60 ng l(-1) for arsenic species, around 130 ng l(-1) for Cr(VI), and higher for Se(IV) and Se(VI) (1.2 and 1.4 microg l(-1) respectively). The method showed good accuracy and repeatability, and no interference of chloride on 75As, 77Se or 53Cr was observed. The developed method was applied to the analysis of several environmental surface water samples.  相似文献   

15.
Hashemi P  Boroumand J  Fat'hi MR 《Talanta》2004,64(3):578-583
Three different agarose-based chelating adsorbents with, respectively, iminodiacetic acid (IDA), tris(2-aminoethyl)amine (TREN) and dipicolylamine (DPA) functional groups and an agarose-based anion exchanger (Q-Sepharose), were studied for the separation and preconcentration of Cr(III) and Cr(VI) species in water. Column recoveries of all the adsorbents were plotted against pH, and it was found that at pH 3.0 the IDA adsorbent selectively adsorbs Cr(III), with a 100 ± 1.0% recovery. The Q-Sepharose, on the other hand, accumulated only Cr(VI) at this pH, again with a recovery of 100 ± 1.0%. A dual column system was accordingly designed, using the two adsorbents in tandem, for the separation and preconcentration of the chromium species.The effects of pH, sample flow rate, column length, eluent type, eluent volume, acid concentration and interfering ions on the recoveries of Cr(III) and Cr(VI) were carefully studied. It was shown that by passing test solutions, at pH 3.0; through the dual column system, the two chromium species could be individually collected on the columns, respectively, and eluted, one after the other. A portion of 2 mol l−1 hydrochloric acid was used for elution of each column before final measurement by flame AAS method. A preconcentration factor of 12, a detection limit of 7.7 ± 0.1 μg l−1 and a precision expressed as relative standard deviation of 0.4% (at 0.3 mg l−1) were achieved for six replicates.Application of the developed method to the determination of chromium species in spiked river and tap water and wastewater samples, from a dye production plant, resulted in excellent agreements with accepted concentrations.  相似文献   

16.
 A method is described for the quantitative preconcentration and separation of trace chromium in water by adsorption on melamine-urea-formaldehyde resin. Cr(VI) is enriched from aqueous solutions on the resin. After elution the Cr(VI) is determined by FAAS. The capacity of the resin is maximal at ∼ pH 2. Total chromium can be determined by the method after oxidation of Cr(III) to Cr(VI) by hydrogen peroxide. The relative standard deviations (10 replicate analyses) for 10 mg/L levels of Cr(VI), Cr(III) and total chromium were 1.5, 3.5 and 2.8% respectively. The procedure has been applied to the determination and speciation of chromium in lake water, tap water and chromium-plating baths.  相似文献   

17.
The possibility of using moss (Funaria hygrometrica), immobilized in a polysilicate matrix as substrate for speciation of Cr(III) and Cr(VI) in various water samples has been investigated. Experiments were performed to optimize conditions such as pH, amount of sorbent and flow rate, to achieve the quantitative separation of Cr(III) and Cr(VI). During all the steps of the separation process, Cr(III) was selectively sorbed on the column of immobilized moss in the pH range of 4-8 while, Cr(VI) was found to remain in solution. The retained Cr(III) was subsequently eluted with 10 ml of 2 mol l−1 HNO3. A pre-concentration factor of about 20 was achieved for Cr(III) when, 200 ml of water was passed. The immobilized moss was packed in a home made mini-column and incorporated in flow injection system for obtaining calibration plots for both Cr(III) and Cr(VI) at low ppb levels that were compared with the plots obtained without column. After separation, the chromium (Cr) species were determined by inductively coupled plasma mass spectrometry (ICP-MS) and flame atomic absorption spectrometry (FAAS). The sorption capacity of the immobilized moss was found to be ∼11.5 mg g−1 for Cr(III). The effect of various interfering ions has also been studied. The proposed method was applied successfully for the determination of Cr(III) and Cr(VI) in spiked and real wastewater samples and recoveries were found to be >95%.  相似文献   

18.
A selective, simple and fast dispersive micro solid phase extraction method using magnetic graphene oxide (GO) as an efficient sorbent has been developed for the extraction, separation and speciation analysis of chromium ions. The method is based on different adsorption behaviour of Cr(VI) and Cr(III) species onto magnetic GO in aqueous solutions which allowed the selective separation and extraction of Cr(VI) in the pH range of 2.0–3.0. The retained Cr(VI) ions by the sorbent were eluted using 0.5 mL of 0.5 mol L?1 nitric acid solution in methanol and determined by ?ame atomic absorption spectrometry. Total chromium content was determined after the oxidation of Cr(III) to Cr(VI) by potassium permanganate. All effective parameters on the performance of the extraction process were thoroughly investigated and optimised. Under the optimised conditions, the method exhibited a linear dynamic range of 0.5–50.0 µg L?1 with a detection limit of 0.1 µg L?1 and pre-concentration factor of 200. The relative standard deviations of 3.8% and 4.6% (n = 8) were obtained at 25.0 µg L?1 level of Cr(VI) for intra- and inter-day analysis, respectively. The method was successfully applied to the speciation and determination of Cr(VI) and Cr(III) in environmental water samples.  相似文献   

19.
Summary Chromium can be present in aqueous solution as Cr(VI) or in monomeric, dimeric, trimeric and higher polymeric forms of Cr(III). Many monomeric forms of Cr(III) are possible, with the water molecules of Cr(H2O) 6 3+ substituted by anionic or neutral species. This proliferation of Cr(III) species makes the complete speciation of chromium a continuing challenge to the analyst. A simple and effective cation exchange procedure for the separation of various of these species uses a small glass column containing 1 mL of pre-treated cation exchange resin (Na+ form). Stepwise elution with solutions of perchloric acid, Ca2+ (pH=2) and La3+ (pH=2) separates Cr(VI) and seven Cr(III) species from CrX3 to tetramer. Radiometric (Cr-51), spectrophotometric and other detection methods can be employed; the use of radiochromium gives the lowest detection limit.  相似文献   

20.
A sensitive method for the simultaneous determination of chromium(III) (Cr3+) and chromium(VI) (CrO4(2-)) using in-capillary reaction, capillary electrophoresis (CE) separation and chemiluminescence (CL) detection was developed. The chemiluminescence reaction was based on luminol oxidation by hydrogen peroxide in basic aqueous solution catalyzed by Cr3+ ion followed by capillary electrophoresis separation. Based on in-capillary reduction, chromium(VI) can be reduced by acidic sodium hydrogensulfite to form chromium(III) while the sample is running through the capillary. Before the electrophoresis procedure, the sample (Cr3+ and CrO4(2-)), buffer and acidic sodium hydrogensulfite solution segments were injected in that order into the capillary, followed by application of an appropriate running voltage between both ends. As both chromium species have opposite charges, Cr3+ ions migrate to the cathode, while CrO4(2-) ions, moving in the opposite direction toward the anode, react with acidic sodium hydrogensulfite which results in the formation of Cr3+ ions. Because of the migration time difference of both Cr3+ ions, Cr(III) and Cr(VI) could be separated. The running buffer was composed of 0.02 mol l(-1) acetate buffer (pH 4.7) with 1 x 10(-3) mol l(-1) EDTA. Parameters affecting CE-CL separation and detection, such as reductant (sodium hydrogensulfite) concentration, mixing mode of the analytes with CL reagent, CL reaction reagent pH and concentration, were optimized. The limits of detection (LODs) of Cr(III) and Cr(VI) were 6 x 10(-13) and 8 x 10(-12) mol l(-1) (S/N=3), respectively. The mass LODs for Cr(III) and Cr(VI) were 1.2 x 10(-20) mol (12 zmol) and 3.8 x 10(-19) mol (380 zmol), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号