首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
针对二维三温能量方程九点格式离散后形成的非线性方程组,研制了高效求解的代数解法器.主要思想是在部分Newton-Krylov(PNK)方法和Jacobi矩阵自由的Newton-Krylov(JFNK)方法的框架下,结合非精确Newton类方法和预条件Krylov子空间方法进行高效求解.数值结果显示,PNK方法比非线性块Gauss-Seidel方法快6倍以上,在PNK框架下比较了3种预条件子和4种Krylov子空间方法,得出不同组合的最佳方案.还比较了JFNK方法和PNK方法.  相似文献   

2.
A method to solve the Boltzmann equation is analyzed in the case when the distribution function depends on slow and fast time and coordinate scales. Basic relationships for calculating the nonequilibrium multiscale distribution function are shown to differ substantially from those found in the framework of the Chapman-Enskog method: the transfer equations are complemented by the contributions of relaxation processes. The heat and momentum transfer equations derived from the general solution to the Boltzmann equation involve additional terms accounting for relaxation effects. The relaxation effects included in the energy equation result in both a hyperbolic heat conduction equation and a finite rate of heat transfer. In the viscous stress tensor, the Newtonian term of the transfer equation turns out to be supplemented by relaxation terms.  相似文献   

3.
刘志刚  邹晓兵  王新新 《强激光与粒子束》2022,34(7):075002-1-075002-11
基于拉格朗日描述,建立了水中金属丝电爆炸的单温磁流体动力学模型,并给出一种高阶混合有限元离散求解方法。拉氏可压缩流体方程组中,速度定义在H1连续有限元空间,内能定义在L2间断有限元空间实现物质界面的精确捕捉,存在激波的区域引入张量人工粘性抑制数值振荡。磁扩散方程仅考虑周向磁通量密度,简化为标量方程,使用H1连续有限元方法离散求解。焦耳热和洛伦兹力作为源项引入实现磁流体方程的耦合。数值算例表明:磁扩散求解器能够求解存在不同电导率的多介质磁扩散问题;拉氏流体求解器能够精确追踪物质界面,具有较好的激波分辨能力;耦合RLC电路的磁流体求解器能够复现水中金属丝电爆炸加热相变、冲击波的产生与传播、放电模式转变等物理过程。  相似文献   

4.
In the present work a study is given for the evolution of a flat, isotropic and homogeneous Universe, which is filled with a causal bulk viscous cosmological fluid. We describe the viscous properties by an ultra‐relativistic equation of state, and bulk viscosity coefficient obtained from recent lattice QCD calculations. The basic equation for the Hubble parameter is derived by using the energy equation obtained from the assumption of the covariant conservation of the energy‐momentum tensor of the matter in the Universe. By assuming a power law dependence of the bulk viscosity coefficient, temperature and relaxation time on the energy density, we derive the evolution equation for the Hubble function. By using the equations of state from recent lattice QCD simulations and heavy‐ion collisions we obtain an approximate solution of the field equations. In this treatment for the viscous cosmology, no evidence for singularity is observed. For example, both the Hubble parameter and the scale factor are finite at t = 0, where t is the comoving time. Furthermore, their time evolution essentially differs from the one associated with non‐viscous and ideal gas. Also it is noticed that the thermodynamic quantities, like temperature, energy density and bulk pressure remain finite. Particular solutions are also considered in order to prove that the free parameter in this model does qualitatively influence the final results.  相似文献   

5.
In this paper we present a method for determining the rotational diffusion tensor from NMR relaxation data using a combination of approximate and exact methods. The approximate method, which is computationally less intensive, computes values of the principal components of the diffusion tensor and estimates the Euler angles, which relate the principal axis frame of the diffusion tensor to the molecular frame. The approximate values of the principal components are then used as starting points for an exact calculation by a downhill simplex search for the principal components of the tensor over a grid of the space of Euler angles relating the diffusion tensor frame to the molecular frame. The search space of Euler angles is restricted using the tensor orientations calculated using the approximate method. The utility of this approach is demonstrated using both simulated and experimental relaxation data. A quality factor that determines the extent of the agreement between the measured and predicted relaxation data is provided. This approach is then used to estimate the relative orientation of SH3 and SH2 domains in the SH(32) dual-domain construct of Abelson kinase complexed with a consolidated ligand.  相似文献   

6.
This paper demonstrates that the Lorentz equation combined with the equation for electron drift in an external magnetic field gives a definite value for the relaxation time of the electron motion in a crystalline solid in the aforementioned field. The main result is that the product of the relaxation time and the strength of the magnetic field remain constant and are dependent only on the structure of the energy band of the solid. Free electrons, or nearly free electrons, result in the diagonal components of the tensor for magnetoresistance tending to zero for all electron states. For the electrons in a crystal lattice, the relaxation time considered along the cross-section line in the reciprocal space of a plane normal to the magnetic field and the surface of constant energy become highly anisotropic quantities.  相似文献   

7.
8.
We present a fully second order implicit/explicit time integration technique for solving hydrodynamics coupled with nonlinear heat conduction problems. The idea is to hybridize an implicit and an explicit discretization in such a way to achieve second order time convergent calculations. In this scope, the hydrodynamics equations are discretized explicitly making use of the capability of well-understood explicit schemes. On the other hand, the nonlinear heat conduction is solved implicitly. Such methods are often referred to as IMEX methods [2], [1], [3]. The Jacobian-Free Newton Krylov (JFNK) method (e.g. [10], [9]) is applied to the problem in such a way as to render a nonlinearly iterated IMEX method. We solve three test problems in order to validate the numerical order of the scheme. For each test, we established second order time convergence. We support these numerical results with a modified equation analysis (MEA) [21], [20]. The set of equations studied here constitute a base model for radiation hydrodynamics.  相似文献   

9.
We study a possible gravitational vacuum-effect, in which vacuum-energy variation is due to variation of gravitational field, vacuum state gains gravitational energy and releases it by spontaneous photon emissions. Based on the path-integral representation, we present a general formulation of vacuum transition matrix and energy-momentum tensor of a quantum scalar field theory in curved spacetime. Using analytical continuation of dimensionality of the phase space, we calculate the difference of vacuum-energy densities in the presence and absence of gravitational field. Using the dynamical equation of gravitational collapse, we compute the rate of vacuum state gaining gravitational energy. Computing the transition amplitude from initial vacuum state to final vacuum state in gravitational collapsing process, we show the rate and spectrum of spontaneous photon emissions for releasing gravitational energy. We compare our idea with the Schwinger idea for Sonoluminiescence and contrast our scenario with the Hawking effect.  相似文献   

10.
The present communication reports the experimental values of NMR spin-lattice relaxation time (T1) and dielectric relaxation time (τ) of piperidine, pyrrole, pyridine, diethylamine, triethylamine and pyrrolidine. The values of activation energy (ΔEA) obtained using dielectric relaxation time, have been correlated with calculated values of ΔEA obtained using Arrhenius equation of NMR relaxation time (T1) for pyridine, diethylamine and pyrrole. Authors have also established a correlation between the experimental values of NMR spin-relaxation time (T1) with its calculated values obtained using different equations of dielectric relaxation time (τ).  相似文献   

11.
Collisions of metastable antiprotonic helium with ordinary He atoms can induce transitions between hyperfine structure (HFS) sublevels and thus relaxation of the populations as well as shift and broadening of M1 microwave spectral lines. Previously we have considered these effects, using quantum close-coupling method for the collisions and the model interatomic interaction involving tensor term (Korenman and Yudin, J Phys B At Mol Opt Phys 39:1473–1484, 2006). In this paper we extend the consideration in two lines: (i) collisional transition rates, shifts and broadenings of M1-lines are considered in relation to the strength of the tensor interaction; (ii) time evolution of the density matrix of HFS states is considered using the generalized master equation with the calculated elementary characteristics. A good agreement with the recent experimental data on the time dependence of optimum signal-to-noise ratio and of linewidth is obtained using the strength of tensor interactions as a free parameter.  相似文献   

12.
The Schur-decomposition for three-dimensional matrix equations is developed and used to directly solve the radiative discrete ordinates equations which are discretized by Chebyshev collocation spectral method. Three methods, say, the spectral methods based on 2D and 3D matrix equation solvers individually, and the standard discrete ordinates method, are presented. The numerical results show the good accuracy of spectral method based on direct solvers. The CPU time cost comparisons against the resolutions between these three methods are made using MATLAB and FORTRAN 95 computer languages separately. The results show that the CPU time cost of Chebyshev collocation spectral method with 3D Schur-decomposition solver is the least, and almost only one thirtieth to one fiftieth CPU time is needed when using the spectral method with 3D Schur-decomposition solver compared with the standard discrete ordinates method.  相似文献   

13.
Using the method of the quasiclassical Green function, we derive a set of kinetic equations which describe general nonequilibrium situations in the quasiclassical regime, i.e., when the external frequency and wave vector, ω and q are small compared to the atomic scale (ω ? μ, ∥ q ∥ ? pf. The equations consist of a Boltzmann equation for the quasiparticle distribution function, labeled by the energy and the direction of the momentum (particle representation), coupled to a time dependent Ginzburg-Landau equation for the order parameter. We discuss extensively the properties of these equations, and apply them to orbital and spin dynamics. Solving the Boltzmann equation in a well defined approximation, we are able to derive the expressions for the linewidths for all temperatures, with the correct identification of the phenomenological relaxation times. Furthermore, we discuss the connection between various relaxation times used in non-equilibrium situations, and we give a detailed comparison of the particle representation with the excitation representation which is used frequently in other work on non-equilibrium phenomena in superfluid 3He and in superconductors.  相似文献   

14.
Approximate analytical solutions of the Dirac equation are obtained for some diatomic molecular potentials plus a tensor interaction with spin and pseudospin symmetries with any angular momentum. We find the energy eigenvalue equations in the closed form and the spinor wave functions by using an algebraic method. We also perform numerical calculations for the Pöschl-Teller potential to show the effect of the tensor interaction. Our results are consistent with ones obtained before.  相似文献   

15.
In this article, we present a simple direct matrix method for analytically computing the Jacobian of nonlinear algebraic equations that arise from the discretization of nonlinear integro-differential equations. The method is based on a formulation of the discretized equations in vector form using only matrix-vector products and component-wise operations. By applying simple matrix-based differentiation rules, the matrix form of the analytical Jacobian can be calculated with little more difficulty than required to compute derivatives in single-variable calculus. After describing the direct matrix method, we present numerical experiments demonstrating the computational performance of the method, discuss its connection to the Newton–Kantorovich method and apply it to illustrative 1D and 2D example problems from electrochemical transport.  相似文献   

16.
The quantum theory of angular momentum affords a treatment of tensors and vectors in a spherical basis. By using this theory we define the tensor differential operators: divergence, curl and gradient which act on a tensor of any rank, in terms of C-G coefficients. With these definitions we obtain a matrix representation and useful properties for those operators. An interesting application of this formalism is to find the wave equation of a tensor of any rank in a linear theory. This provides a new common way to look at the wave equations associated with both Maxwell's equations and the Maxwell-like equations for the linearized Weyl curvature tensor in gravitoelectromagnetism describing gravitational radiation on a Minkowski spacetime background.  相似文献   

17.
We apply the recently proposed quasi-linear response theory to the study of energy transport in deep inelastic heavy-ion collisions. By solving a master equation, we show how quickly the canonical distribution function becomes a good representation of the intrinsic state in the case of the random intrinsic excitations proposed by Weidenmüller and co-workers. We numerically analyze the properties of the corresponding friction tensor. In addition, we demonstrate that the known fluctuation dissipation theorem in the linear response theory is considerably violated for large part of deep inelastic collisions. We then calculate the double differential cross section for three typical examples. The results agree well with the experimental data if we phenomenologically introduce a time-dependent potential. We remark on the difference of the present calculation from that of the linear response theory. We comment also on the validity of a time-dependent theory, which derives the basic equations from time-independent equations by assuming a one-to-one correspondence between the time and the relative distance.  相似文献   

18.
Recently, a generalized gravity theory was proposed by Harko et al. where the Lagrangian density is an arbitrary function of the Ricci scalar R and the trace of the stress-energy tensor T, known as F(R,T) gravity. In their derivation of the field equations, they have not considered conservation of the stress-energy tensor. In the present work, we have shown that a part of the arbitrary function f(R,T) can be determined if we take into account of the conservation of stress-energy tensor, although the form of the field equations remain similar. For homogeneous and isotropic model of the universe the field equations are solved and corresponding cosmological aspects has been discussed. Finally, we have studied the energy conditions in this modified gravity theory both generally and a particular case of perfect fluid with constant equation of state.  相似文献   

19.
We present a computer program ROTDIF for efficient determination of a complete rotational diffusion tensor of a molecule from NMR relaxation data. The derivation of the rotational diffusion tensor in the case of a fully anisotropic model is based on a six-dimensional search, which could be very time consuming, particularly if a grid search in the Euler angle space is involved. Here, we use an efficient Levenberg-Marquardt algorithm combined with Monte Carlo generation of initial guesses. The result is a dramatic, up to 50-fold improvement in the computational efficiency over the previous approaches. This method is demonstrated on a computer-generated and real protein systems. We also address the issue of sensitivity of the diffusion tensor determination from (15)N relaxation measurements to experimental errors in the relaxation rates and discuss possible artifacts from applying higher-symmetry tensor model and how to recognize them.  相似文献   

20.
彭傲平  李志辉  吴俊林  蒋新宇 《物理学报》2017,66(20):204703-204703
为模拟研究高温高马赫数下多原子气体内能激发对跨流域非平衡流动的影响,将转动能、振动能分别作为气体分子速度分布函数的自变量,把转动能和振动能处理为连续分布的能量模式,将Boltzmann方程的碰撞项分解成弹性碰撞项和非弹性碰撞项,同时将非弹性碰撞按一定松弛速率分解为平动-转动能松弛过程和平动-转动-振动能松弛过程,构造了一类考虑振动能激发的Boltzmann模型方程,并证明了其守恒性和H定理.基于内部能量变量对分布函数无穷积分,引入三个约化速度分布函数,得到一组考虑振动能激发的约化速度分布函数控制方程组,使用离散速度坐标法,基于LU-SGS隐式格式和有限体积法求解离散速度分布函数,建立含振动能激发的气体动理论统一算法.通过开展高稀薄流到连续流圆柱绕流问题统一算法与直接模拟蒙特卡罗法模拟结果对比分析,特别是过渡流区平动、转动、振动非平衡效应对绕流流场与物面力热特性的影响机制,证实了所建立的含振动能激发的Boltzmann模型方程及气体动理论统一算法的准确可靠性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号