首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
An efficient approach is demonstrated for preparing particles consisting of a silver core and a shell of molecularly imprinted polymer (Ag@MIP). The MIP is prepared by using bisphenol A (BPA) as the template and 4-vinylpyridine as the functional monomer. The Ag@MIP fulfills a dual function in that the silver core acts as a SERS substrate, while the MIP allows for selective recognition of BPA. The Ag@MIP is characterized by scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, thermogravimetric analysis and Raman spectroscopy. The Raman intensity of Ag@MIP is higher than that of bare silver microspheres. The detection limit for BPA is as low as 10?9 mol·L?1.
Graphical abstract Schematic illustration of the preparation of silver microspheres coated with a molecularly imprinted polymer (Ag@MIPs) for detecting bisphenol A (BPA) by surface enhanced Raman scattering (SERS).
  相似文献   

2.
Hybrids consisting of silver nanoparticles (in varying fractions) and of TiOx/ZnO were prepared via top-down ion beam sputtering (IBS) deposition on silicon substrates. The deposited nanomaterials were characterized by scanning electron microscopy and X-ray photoelectron spectroscopy. It is shown that such composites represent a viable substrate for use in both surface enhanced Raman spectroscopy (SERS) and surface enhanced infrared absorption spectroscopy (SEIRAS), as exemplarily shown for crystal violet as the model analyte. The C-H bending mode at about 1181 cm?1 and the C-N vibration at 1361 cm?1 observed in the SERS and SEIRAS spectra, respectively, have been used as analytical signal. The substrate consisting of TiOx NPs with 33% fraction of silver provides the strongest enhancement in SERS (up to 10,000-fold), while TiOx/AgNPs with thickness of 2 and 1 nm in ion beam sputtering, respectively, provides the best sensitivity in SEIRAS. The substrates also display photocatalytic activity as shown by the degradation of adsorbed crystal violet under ultraviolet irradiation.
Graphical abstract Schematic of the preparation of hybrid substrates consisting of Ag and TiOx/ZnO nanoparticles via ion beam sputtering deposition. They were applied in both surface enhanced Raman and surface enhanced infrared absorption spectroscopies using crystal violet as model analyte, showing enhancements up to >10,000-fold in Raman.
  相似文献   

3.
The authors describe a new composite based on SERS-active copper nanoparticles (CuNPs; 10?±?2 nm) incorporated into calcium carbonate microspheres (CaCO3-CuNPs; 3.4?±?0.3 μm). The CaCO3 coating acts as a temporal protector of CuNPs against oxidation. Incorporated CuNPs have significantly improved stability during storage and a month-long shelf lifetime. The composite was used for SERS detection of rhodamine 6G and two antibacterial drugs (ceftriaxone and sulfadimethoxine). Two analytical formats, one with and one without solid phase extraction, are introduced to demonstrate the flexibility of the method. Both formats imply the dissolution of CaCO3 matrix before SERS analysis to release CuNP used as SERS substrate. The study of the influence of pH value and acid nature on the SERS signal demonstrated that HCl is the most efficient candidate to release the CuNPs. Sensitivity (expressed as LOD) is shown to be improved by more than one order when solid phase extraction is used. The average SERS enhancement factor is 10^7 which makes the material efficiency comparable to the one of silver nanoparticles. The LOD (<5 μM), precision (RSDs between 20 and 24% at LOD levels), and trueness (apparent recoveries 84–113%) for the two antibiotics (ceftriaxone and sulfadimethoxine) make the method quite useful for quantitative analysis and therapeutic drug monitoring at physiologically relevant concentrations.
Graphical abstract A composite with temporally stable copper nanoparticles was synthesized, studied, and used for SERS detection of two antibacterial drugs. The analytical efficiency of the composite was found appropriate for quantitative analysis due to Raman enhancement comparable with silver nanostructures.
  相似文献   

4.
This paper describes a rapid method for fabrication of a paper substrate coated with gold nanoparticles (GNPs) that results in the formation of a large number of hot spots on the surface and allows an adequate control of the active area. The resulting substrate is shown to be a viable material for use in quantitative surface-enhanced Raman spectroscopy (SERS) analysis. The influence of the amount of GNPs on the SERS signals (using crystal violet as a sample analyte) was correlated with field-emission scanning electron microscopy, UV-visible and theoretical studies. The use of this substrates results in larger enhancement of Raman signals and in comparably repeatability when compared to commercially available substrates. The substrate was applied to SERS-based determination of nicotine and uric acid in aqueous solution, and the respective limits of detection are 20 and 30 μg L?1. The results indicate that the SERS substrates may be applied to the quantification of a wide variety of molecules.
Graphical abstract A novel and rapid procedure for preparation of sensitive and reproducible paper-based SERS substrates has been successfully developed and applied to quantitative detection of nicotine and uric acid.
  相似文献   

5.
The β-adrenergic agonist brombuterol (BB) is illicitly used as an additive in animal feed to enhance the lean meat-to-fat ratio. The authors describe an ultrasensitive lateral flow immunochromatographic assay (LFIA) based on the use of surface enhanced Raman scattering (SERS) for the determination of brombuterol in swine meat and urine samples. Flower-like gold-silver core-shell bimetallic nanoparticles (referred to as AuNF@Ag) displaying strong SERS enhancement were synthesized, characterized and used as the substrate for the preparation of the LFIA. Polyclonal antibody against brombuterol was immobilized on the surface of the AuNF@Ag particles carrying the Raman reporter 4-mercaptobenzoic acid (MBA). After performing an LFIA, the Raman scattering intensity of MBA on the test line was measured and used for quantitation of brombuterol. Figures of merit of this assay procedure include (a) duration of LFIA process of 15 min; (b) an IC50 value (e.g. the concentration of brombuterol producing 50% of signal inhibition in standard curve) of 380 pg mL-1; and (c) a limit of detection as low as 0.5 pg mL-1. The LFIA is selective over the molecules salbutamol, ractopamine, phenylethanolamine A, isoproterenol and phenylephrine, but shows a 8.5% cross-reactivity to clenbuterol, probably due to the high structural similarity. Swine meat and urine samples spiked with different amounts of brombuterol were analyzed by this method and gave recoveries between 95.8 and 108.0%, and relative standard deviations between 2.0 and 6.3% (for n = 3).
Graphical abstract Schematic presentation of the lateral flow immunochromatographic assay (LFIA) based on surface enhanced Raman scattering (SERS) using flower-like gold-silver core-shell nanoparticles. It is capable of detecting brombuterol in swine meat and urine samples with high sensitivity and specificity.
  相似文献   

6.
A SERS-based aptasensor for ochratoxin A (OTA) is described. It is making use of Fe3O4@Au magnetic nanoparticles (MGNPs) and of Au@Ag nanoprobes modified with the Raman reporter 5,5-dithiobis-(2-nitrobenzoic acid; DTNB). Au-DTNB@Ag NPs were modified with the OTA aptamer (aptamer-GSNPs) and used as Raman signal probes. The SERS peak of DTNB at 1331 cm?1 was used for quantitative analysis. MGNPs modified with cDNA (cDNA-MGNPs) were used as capture probes and reinforced substrates. When the Au-DTNB@Ag-Fe3O4@Au complexes are formed through oligonucleotide hybridization, the Raman signal intensity of the Raman probe is significantly enhanced. If the OTA concentration in samples increases, more Raman signal probes (aptamer-GSNPs) will dissociate from the cDNA-MGNPs because more OTA aptamer is bound by OTA. This leads to a lower Raman signal after magnetic separation. Under the optimal conditions, the detection limit for OTA is 0.48 pg·mL?1 based on 3σ criterion. This is attributed to the multiple Raman signal enhancement and the good performance of the OTA aptamer. The good recovery and accuracy of the assay was confirmed by evaluating spiked samples of wine and coffee.
Graphical abstract Schematic of an aptamer based SERS assay for OTA by integrating Fe3O4@AuNPs (MGNPs) with Au-DTNB@Ag NPs with multiple signal enhancement. Aptamer modified Au-DTNB@Ag NPs are used as Raman probes, and MGNPs modified with cDNA are used as capture probes and reinforced substrates.
  相似文献   

7.
Thin films of La2O3 were deposited onto glass substrates by ultrasonic spray pyrolysis. Their structural and morphological properties were characterized by X-ray diffraction, Fourier transform Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray photo-electron spectroscopy, Brunauer-Emmett-Teller and optical absorption techniques. The sensor displays superior CO2 gas sensing performance at a low operating temperature of 498 K. The signal change on exposure to 300 ppm of CO2 is about 75%, and the signal only drops to 91% after 30 days of operation.
Graphical abstract Schematic diagram of the CO2 gas sensing mechanism of an interconnected web-like La2O3 nanostructure in presence of 300 ppm of CO2 gas and at an operating temperature of 498 K.
  相似文献   

8.
The authors describe a sensitive surface-enhanced Raman scattering (SERS)-based aptasensor for the detection of the food pathogen Vibrio parahaemolyticus. Nanostructures consisting of Fe3O4@Au particles wrapped with graphene oxide (GO) were used both as SERS substrates and separation tools. A first aptamer (apt 1) was immobilized on the Fe3O4@Au/GO nanostructures to act as a capture probe via the affinity binding of aptamer and V. parahaemolyticus. A second aptamer (apt-2) was modified with the Raman reporter molecule TAMRA to act as a SERS sensing probes that binds to the target the same way as the Fe3O4@Au/GO-apt 1. The sandwich formed between Fe3O4@Au/GO-apt 1/V. parahaemolyticus and apt 2-TAMRA can be separated with the aid of a magnet. The concentration of V. parahaemolyticus can be quantified by measurement of the SERS intensity of TAMRA. Under optimal conditions, the signal is linearly related to the V. parahaemolyticus concentration in the range between 1.4 × 102 to 1.4 × 106 cfu·mL?1, with a detection limit of 14 cfu·mL?1. Recoveries ranging from 98.5% to 105% are found when analyzing spiked salmon samples. In our perception, the assay described here is a useful tool for quantitation of V. parahaemolyticus in real samples.
Graphical abstract GO wrapped Fe3O4@Au nanostructures were synthesized as the substrate and modified with with a first aptamer (apt 1) to capture V. parahaemolyticus. TAMRA labelled aptamer 2 was then used as signal probe. The V. parahaemolyticus concentrations are closely related to the Raman intensity of TAMRA.
  相似文献   

9.
The study reports on the synthesis of a graphene aerogel@octadecylamine-functionalized carbon quantum dots (GA@O-CQDs). The graphene oxide aqueous dispersion, O-CQDs aqueous dispersion and toluene were strongly mixed to make a toluene-in-water Pickering emulsion. The graphene oxide sheets in the aqueous phase are reduced by hydrazine hydrate, diffuse into the toluene droplets, and self-assemble into graphene oxide microgels. This is followed by freeze-drying and thermal annealing to obtain the GA@O-CQDs hybrid that has a three-dimensional structure of several microns. It was dispersed in ethanol and deposited on a glassy carbon electrode. The modified electrode was applied to differential pulse voltammetric determination of acetaminophen, best at a peak potential of 0.15 V (vs. Ag/AgCl). Figures of the merit include a wide linear response range (0.001–10 μM) and a 0.38 nM of the detection limit (S/N?=?3). The assay has been applied to the determination of acetaminophen in tablets.
Graphical abstract Schematic presentation of the synthesis of graphene aerogel@octadecylamine-functionalized carbon quantum dots. The synthesis achieves to the intimate chemical and electrical contact between graphene and carbon quantum dots. An electrode modified with the hybrid exhibits ultra high sensitivity for detection of acetaminophen.
  相似文献   

10.
The authors describe a method for amperometric determination of thiodiglycol (TDG), the main hydrolysis product of sulfur mustard. The electrode consists of a mixture of graphene nanosheets, silver nanoparticles and the ionic liquid octylpyridinium hexafluorophosphate. Electrochemical oxidation of TDG was performed by cyclic voltammetry at pH 4 and revealed a pair of well-defined redox peaks at potentials of 0.43 and 0.19 V (vs. Ag/AgCl). Amperometric detection was accomplished over a dynamic range that is linear in the 10–3700 μM concentration range. The detection limit (at an S/N of 3) is 6 μM. The electrode was applied to the determination of TDG in (spiked) waste water and gave recoveries that ranged from 98.2 to 103.3 %.
Graphical abstract The article describes an amperometric sensor for the determination of thiodiglycol, the main hydrolysis product of sulfur mustard. The electrode was constructed by using graphene nanosheets, silver nanoparticles and an ionic liquid electrode, and it was successfully applied to the determination of thiodiglycol in (spiked) waste water samples.
  相似文献   

11.
Platinum nanoparticles (PtNPs) were uniformly grown on the surface of gold nanorods (AuNRs) by a laser irradiation procedure. Transmission electron microscopy confirmed that the PtNPs are uniformly grown on the surface of the AuNRs. The formation of PtNPs on the AuNRs leads to a red-shift of the absorption maximum from 734 nm to 766 nm. In addition, the efficiency of surface enhanced Raman scattering (SERS) is increased, but the photothermal conversion efficiency is decreased compared to pure AuNRs. The result indicates that electron transfer occurs between gold and platinum. The peroxidase mimicking effect of PtNPs, AuNRs and Au/Pt NRs by catalyzing the oxidation of colorless 3,3’,5,5’-tetramethylbenzidine (TMB) to blue oxidized 3,3’,5,5’-tetramethylbenzidine (oxTMB; a quinone) in the presence of H2O2. The catalytic activity of Au/Pt NRs is higher than that of sole AuNRs or PtNPs by factors of 4.2 and 2.1, respectively. Thus, Au/Pt NRs have been used for the detection of peroxide and the limit of detection is 0.04 μM. This work provides an approach to integrate the peroxidase mimicking effect with SERS enhancement for potential application in detection.
Graphical abstract A schematic diagram for the laser-induced growth of Au/Pt NRs and the colorimetric determination of hydrogen peroxide concentration with their peroxidase mimicking properties. The limit of detection is 0.04 μM based on the use of Au/Pt NRs as a catalyst.
  相似文献   

12.
A graphene based bucky gel-coated stainless steel fiber was prepared and applied to headspace solid phase microextraction of volatile organic compounds. Graphene was mixed with an ionic liquid to produce a bucky gel that displays the attractive features of both compounds. It can be directly deposited on an etched stainless steel wire to give the fiber for use in extraction of benzene, toluene, ethylbenzene and xylene (BTEX) isomers. The presence of graphene favors the π-interaction between the sorbent and aromatic analytes. The sorbent is thermally stable up to 300 °C and can be used more than 50 times. It was characterized by field emission scanning electron microscopy, FT-IR spectroscopy and thermogravimetric analysis. Under optimized conditions, linear responses were found in the range of 0.11–5000 μg L?1 for toluene, 0.15–5000 for benzene and o-xylene, 0.17–5000 for m- and?p-xylene and 0.20–5000 for ethylbenzene. Limits of detection are between 0.03 and 0.06 μg L?1 (at an S/N ratio of 3). The run-to-run RSDs are <5.8% (for n =?6), and fiber-to-fiber RSDs are 4.1–9.2% (n =?4). The method was successfully applied to the extraction of BTEX isomers in spiked urine samples and gave recoveries between 88 and 105%.
Graphical abstract Graphene based bucky gel (G-BG) was prepared by mixing an ionic liquid with graphene. It was physically deposited on stainless steel wire. The fiber was applied to the headspace solid phase microextraction (HS-SPME) of benzene, toluene, ethylbenzene and xylenes.
  相似文献   

13.
The authors report on a robust method for the synthesis of gold nanorods (AuNRs) with tunable dimensions and longitudinal surface plasmon resonance. The method relies on seed-mediated particle growth in the presence of benzalkonium chloride (BAC) in place of the widely used surfactant cetyltrimethyl ammonium bromide (CTAB). Uniform AuNRs were obtained by particle growth in solution, and BAC is found to stabilize the AuNRs for >1 year. The SERS activity of the resulting AuNRs is essentially identical to that of CTAB-protected nanorods. The SERS activity of the BAC protected nanorods was applied to the quantitative analysis of potato virus X (PVX). The calibration plot for PVX is linear in the 10 to 750 ng?mL?1 concentration range, and the detection limit is 2.2 ng?mL?1.
Graphical abstract SERS-active gold nanorods (AuNRs) have been prepared by using benzalkonium chloride as stabilization agent. Effects of chemical parameters on AuNRs have been explored and AuNRs were used in quantitative analysis of potato virus X (PVX).
  相似文献   

14.
It is found that the fluorescence of carbon dots (CD) with an emission peak at 459 nm is strongly quenched by silver nanoparticles (AgNPs) with their absorption peak at 430 nm. The finding was applied in a fluorescence quenchometric lateral flow immunochromatographic assay for detection of zearalenone (ZEN) with CDs conjugated to ovalbumin (OVA) as donor signal probe and AgNP-Ab as acceptor signal probe. The assay has an LOD of 0.1 μg·L?1 for ZEN. This is 10 times better than the respective “turn-off” AgNP-based LFIA. In case of cereal samples and their products, the LODs range from 1 to 2.5 μg·kg?1. Only minor cross reactivity is found for fusarium toxins, and no cross-sensitivity for aflatoxin B1, T-2 mycotoxin, ochratoxin A, deoxynivalenol, and fumonisin B1. The assay represents a simple, sensitive, and rapid tool for determination of ZEN in cereal samples and their products.
Graphical abstract Schematic presentation of fluorescence quenching lateral flow immunochromatographic assay (FLFIA) based on carbon dots (CD) and silver nanoparticle (AgNP) fluorescence resonance energy transfer (FRET) system for the rapid high sensitive detection of zearalenone (ZEN) in cereal samples.
  相似文献   

15.
A voltammetric sensor is presented for the simultaneous determination of dopamine (DA) and uric acid (UA) in the presence of ascorbic acid (AA). It is based on a gold electrode (GE) modified with carboxyl-functionalized graphene (CFG) and silver nanocube functionalized DA nanospheres (AgNC@PDA-NS). The AgNC@PDA-NS nanocomposite was characterized by scanning electron microscopy and UV-Vis spectroscopy. The electrochemical behavior of the modified electrode was evaluated by electrochemical impedance spectroscopy, cyclic voltammetry and differential pulse voltammetry. The modified electrode displays good electrocatalytic activity towards DA (typically at 0.14 V vs. Ag/AgCl) and UA (typically at 0.29 V vs. Ag/AgCl) even in the presence of ascorbic acid. Response to DA is linear in the concentration range of 2.5 to 130 μM with a detection limit of 0.25 μM. Response to UA is linear in the concentration range of 10 to 130 μM with a detection limit of 1.9 μM. In addition, the sensitivity for DA and UA is 0.538 and 0.156 μA μM?1 cm?2, respectively. The modified electrode also displays good stability, selectivity and reproducibility.
Graphical abstract The gold electrode modified with polydopamine nanospheres functionalized with silver nanocube and carboxylated graphene is used for simultaneous determination of DA and UA in the presence of AA, with wide linear range and low detection limit.
  相似文献   

16.
Glutathione coated gold and silver nanoclusters (GSH-Au/AgNCs) were synthesized by one-pot reduction methods and are found to be viable fluorescent nanoprobes for cysteine (Cys) and arginine (Arg), with good selectivity over other amino acids. The GSH-Au/AgNCs have two emissions at 616 nm and 412 nm when excited at 360 nm. With the increased concentration of Cys, the ratio of the emission intensities (I616/I412) linearly decreases with Cys in concentration ranging from 0.05 to 10 μM and from 10 to 50 μM, respectively. With increased concentrations of Arg, the ratio of I616/I412 linearly decreases with Arg concentration ranging from 0 to 50 μM and from 50 to 100 μM, respectively. The probe was applied to the determination of Cys and Arg in spiked samples of serum and urine where it gave good recoveries.
Graphical abstract Glutathione-coated gold and silver nanoclusters (GSH-Au/AgNCs) were synthesized by one-pot reduction and are found to be viable fluorescent nanoprobes for cysteine (Cys) and arginine (Arg).
  相似文献   

17.
This paper describes a CdTe quantum dot-based fluorescence resonance energy transfer (FRET) based assay for the detection of the breast cancer biomarker microRNA. The method relies on energy transfer between DNA-templated silver nanoclusters (AgNCs) and CdTe QDs. Interaction between double strand oligonucleotide and QDs can be detected qualitatively through gel analysis and quantitatively by the signal amplification from AgNCs to QDs via FRET, best measured at an excitation wavelength of 350 nm and at emission wavelengths of 550 and 590 nm. Three microRNAs (microRNA-21, microRNA-155 and Let-7a) were quantified to verify the feasibility of the method, and a high sensitivity for microRNAs was achieved. Fluorescence intensity increases linearly with the log of the concentration of microRNA 155 in the 5.0 pM to 50 nM range, with a 1.2 pM detection limit.
Graphical abstract Schematic presentation of a quantum dot-based (QD-based) fluorescence resonance energy transfer technique for the detection of microRNA (miRNA). The method relies on energy transfer between DNA-templated silver nanoclusters (AgNCs) and QDs.
  相似文献   

18.
An electrochemical nanoaptasensor is described that is based on the use of a glassy carbon electrode (GCE) modified with electrodeposited silver nanoparticles (AgNPs). An aptamer (Apt) against trinitrotoluene (TNT) was then immobilized on the AgNPs. The addition of TNT to the modified GCE leads to decrease in peak current (typically measured at a potential of ?0.45 V vs. Ag/AgCl) of riboflavin which acts as an electrochemical probe. Even small changes in the surface (as induced by binding of Apt to TNT) alter the interfacial properties. As a result, the LOD is lowered to 33 aM, and the dynamic range extends from 0.1 fM to 10 μM without sacrificing specificity.
Graphical abstract Schematic presentation of a nanoaptasensor which is based on a glassy carbon electrode (GCE) modified with electrodeposited silver nanoparticles (AgNPs) and aptamer (Apt). It was applied to the detection of 2,4,6-trinitrotoluene (TNT) with the help of riboflavin (RF) as a redox probe.
  相似文献   

19.
A new method is described for the determination of the pesticide λ-cyhalothrin (LC). It combines SERS detection with molecular imprinting and largely improves selectivity. A multilayer surface imprinted nanocomposite was synthesized in two steps on a nanostructure of type SiO2@rGO@Ag acting as a substrates. Firstly, the surface of the SiO2@rGO@Ag composite was modified with self-polymerized dopamine. Secondly, surface-initiated polymerization was carried out to prepare a molecularly imprinted polymer (MIP) using LC as the template. The use of this SiO2@rGO@Ag-MIP allows for excellent SERS based detection and has high selectivity for LC. The Raman intensity and LC concentration present perfect linear relationship between 10?5 to 10?9 mol L?1 and the detection limit is 3.8×10?10 mol L?1. All the procedures are conducted in aqueous or ethanol solution.
Graphical abstract Schematic of a new method for determination of the pesticide λ-cyhalothrin. It combines SERS detection with molecular imprinting and largely improves selectivity. A multilayer surface imprinted nanocomposite was synthesized in two steps on a nanostructure of type SiO2@rGO@Ag acting as a substrates.
  相似文献   

20.
The authors describe a method for highly sensitive and selective determination of the activity of protein kinase (PKA). It is based on the finding that silver nanoclusters (AgNCs) can act as a nucleus to catalyze further deposition of silver nanoparticles. This causes the color of a solution to change from pale yellow to black. In the detection scheme presented here, the substrate peptide is phosphorylated by PKA in the presence of ATP. The resulting phosphopeptides bind to oligonucleotide-stabilized AgNCs in the presence of Zr(IV) ions due to electrostatic interactions between Zr(IV) and the phosphate groups, thereby capping the AgNCs. The silver enhancement process (leading to a color change to black) does not work if the AgNCs are capped. The degree of inhibition is proportional to the activity of the kinase. The color change can be detected visually or photographically in a microplate format by exploiting the changes in the grey values of the digital photos. In addition, the DNA-AgNCs display fluorescence emission at 635 nm when excited at 565 nm. Electrochemical assays were performed (at a working voltage as low as 38 mV vs. Ag/AgCl) by using a glassy carbon electrode modified with a solution containing AgNCs, Zr(IV) ions and the peptide, and immersing it into the silver enhancement solution. The assay is highly sensitive and selective. It was applied to the determination of PKA in lysates of HeLa cells. The detection limits typically are between 32 and 37 U? L-1 based on a signal-to-noise ratio of 3.
Graphical Abstract A method for colorimetric and electrochemical determination of the activity of protein kinase activity is described that is based on silver nanocluster (AgNC) based signal amplification. AgNCs act as nucleus for further deposition of silver nanoparticles, but protein kinase can inhibit this process.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号