首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An efficient approach is demonstrated for preparing particles consisting of a silver core and a shell of molecularly imprinted polymer (Ag@MIP). The MIP is prepared by using bisphenol A (BPA) as the template and 4-vinylpyridine as the functional monomer. The Ag@MIP fulfills a dual function in that the silver core acts as a SERS substrate, while the MIP allows for selective recognition of BPA. The Ag@MIP is characterized by scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, thermogravimetric analysis and Raman spectroscopy. The Raman intensity of Ag@MIP is higher than that of bare silver microspheres. The detection limit for BPA is as low as 10?9 mol·L?1.
Graphical abstract Schematic illustration of the preparation of silver microspheres coated with a molecularly imprinted polymer (Ag@MIPs) for detecting bisphenol A (BPA) by surface enhanced Raman scattering (SERS).
  相似文献   

2.
This paper describes a rapid method for fabrication of a paper substrate coated with gold nanoparticles (GNPs) that results in the formation of a large number of hot spots on the surface and allows an adequate control of the active area. The resulting substrate is shown to be a viable material for use in quantitative surface-enhanced Raman spectroscopy (SERS) analysis. The influence of the amount of GNPs on the SERS signals (using crystal violet as a sample analyte) was correlated with field-emission scanning electron microscopy, UV-visible and theoretical studies. The use of this substrates results in larger enhancement of Raman signals and in comparably repeatability when compared to commercially available substrates. The substrate was applied to SERS-based determination of nicotine and uric acid in aqueous solution, and the respective limits of detection are 20 and 30 μg L?1. The results indicate that the SERS substrates may be applied to the quantification of a wide variety of molecules.
Graphical abstract A novel and rapid procedure for preparation of sensitive and reproducible paper-based SERS substrates has been successfully developed and applied to quantitative detection of nicotine and uric acid.
  相似文献   

3.
The authors report on a robust method for the synthesis of gold nanorods (AuNRs) with tunable dimensions and longitudinal surface plasmon resonance. The method relies on seed-mediated particle growth in the presence of benzalkonium chloride (BAC) in place of the widely used surfactant cetyltrimethyl ammonium bromide (CTAB). Uniform AuNRs were obtained by particle growth in solution, and BAC is found to stabilize the AuNRs for >1 year. The SERS activity of the resulting AuNRs is essentially identical to that of CTAB-protected nanorods. The SERS activity of the BAC protected nanorods was applied to the quantitative analysis of potato virus X (PVX). The calibration plot for PVX is linear in the 10 to 750 ng?mL?1 concentration range, and the detection limit is 2.2 ng?mL?1.
Graphical abstract SERS-active gold nanorods (AuNRs) have been prepared by using benzalkonium chloride as stabilization agent. Effects of chemical parameters on AuNRs have been explored and AuNRs were used in quantitative analysis of potato virus X (PVX).
  相似文献   

4.
Platinum nanoparticles (PtNPs) were uniformly grown on the surface of gold nanorods (AuNRs) by a laser irradiation procedure. Transmission electron microscopy confirmed that the PtNPs are uniformly grown on the surface of the AuNRs. The formation of PtNPs on the AuNRs leads to a red-shift of the absorption maximum from 734 nm to 766 nm. In addition, the efficiency of surface enhanced Raman scattering (SERS) is increased, but the photothermal conversion efficiency is decreased compared to pure AuNRs. The result indicates that electron transfer occurs between gold and platinum. The peroxidase mimicking effect of PtNPs, AuNRs and Au/Pt NRs by catalyzing the oxidation of colorless 3,3’,5,5’-tetramethylbenzidine (TMB) to blue oxidized 3,3’,5,5’-tetramethylbenzidine (oxTMB; a quinone) in the presence of H2O2. The catalytic activity of Au/Pt NRs is higher than that of sole AuNRs or PtNPs by factors of 4.2 and 2.1, respectively. Thus, Au/Pt NRs have been used for the detection of peroxide and the limit of detection is 0.04 μM. This work provides an approach to integrate the peroxidase mimicking effect with SERS enhancement for potential application in detection.
Graphical abstract A schematic diagram for the laser-induced growth of Au/Pt NRs and the colorimetric determination of hydrogen peroxide concentration with their peroxidase mimicking properties. The limit of detection is 0.04 μM based on the use of Au/Pt NRs as a catalyst.
  相似文献   

5.
This article demonstrates the feasibility of an alternative strategy for producing temperature sensitive molecularly imprinted microspheres (MIMs) for solid-phase dispersion extraction of malachite green, crystal violet and their leuko metabolites. Thermo-sensitive MIMs can change their structure following temperature stimulation. This allows capture and release of target molecules to be controlled by temperature. The fabrication technique provides surface molecular imprinting in acetonitrile using vinyl modified silica microspheres as solid supports, methacrylic acid and N-isopropyl acrylamide as the functional monomers, ethyleneglycol dimethacrylate as the cross-linker, and malachite green as the template. After elution of the template, the MIMs can be used for fairly group-selective solid phase dispersion extraction of malachite green, crystal violet, leucomalachite green, and leucocrystal violet from homogenized fish samples at a certain temperature. Following centrifugal separation of the microspheres, the analytes were eluted with a 95:5 mixture of acetonitrile and formic acid, and then quantified by ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) with isotope internal calibration. The detection limits for malachite green, crystal violet and their metabolites typically are 30 ng·kg?1. Positive samples were identified by UHPLC-MS/MS in the positive ionization mode with multiple reaction monitoring. The method was applied to the determination of the dyes and the respective leuko dyes in fish samples, and accuracy and precision were validated by comparative analysis of the samples by using aluminum neutral columns.
Graphical abstract We describe an alternative strategy for producing temperature sensitive molecularly imprinted microspheres for solid-phase dispersion extraction of malachite green, crystal violet and their metabolites in fish samples.
  相似文献   

6.
The authors describe a Surface enhanced Raman spectroscopy (SERS)-based method for the detection of gaseous toluene at different temperature regimes using 3D ruffled silver SERS substrates and a commercially available handheld Raman system equipped with a 785 nm laser. The 3D silver SERS substrates were synthesized via electroless deposition of silver on the ruffled sandpaper and HF-etched silicon wafers. The morphological characterization of the silver SERS substrates was carried out by atomic force microscopy and scanning electron microscopy. UV-Vis spectroscopy absorption spectra of the silver nanostructures showed plasmonic peaks at 522 nm and 731 nm. Toluene vapors were collected with a syringe at ambient temperature and at 100 °C, while SERS detection was always performed at room temperature. Toluene detection was based on the measurement of the Raman bands at 787 cm?1 and 1003 cm?1 (in the fingerprint region). The method allow gaseous toluene to be detected at its vapor concentrations of 522 ppm (mg/L), 261 ppm (mg/L) and 26 ppm (mg/L).
Graphical abstract Schematic presentation of an original method for the detection of toluene vapors by SERS technique. The collection of toluene vapors was carried out at room and at high temperatures. The vapors were transferred to methanol by bubbling. The SERS measurements were carried out at room temperature.
  相似文献   

7.
This review (with (318) refs) describes progress made in the design and synthesis of morphologically different metal oxide nanoparticles made from iron, manganese, titanium, copper, zinc, zirconium, cobalt, nickel, tungsten, silver, and vanadium. It also covers respective composites and their function and application in the field of electrochemical and photoelectrochemical sensing of chemical and biochemical species. The proper incorporation of chemical functionalities into these nanomaterials warrants effective detection of target molecules including DNA hybridization and sensing of DNA or the formation of antigen/antibody complexes. Significant data are summarized in tables. The review concludes with a discussion or current challenge and future perspectives.
Graphical abstract ?
  相似文献   

8.
This review (with 121 references) gives a summary on recent advances in the use of nanomaterials for the optical determination of dopamine. It includes a brief overview of the clinical significance of dopamine followed by a discussion on the recent advances in various nanomaterial-based distinctive optical spectroscopic methods such as (a) colorimetry and spectrophotometry, (b) surface-enhanced Raman spectroscopy (SERS), (c) fluorescence spectrometry, and (d) electrochemiluminescence (ECL) spectrometry. All sections are further divided into subsections based on the type of nanomaterial used, and their advantages and disadvantages are discussed. A discussion on the validity of the nanomaterial-based optical detection of dopamine for human samples is also included. This review concludes with highlights of current challenges of nanomaterial-based optical sensors and an outlook on future perspectives.
Graphical abstract Schematic of the use of various nanomaterials in the detection of dopamine based on colorimetry, spectrophotometry, surface-enhanced Raman spectroscopy, fluorescence and electrochemiluminescence.
  相似文献   

9.
This review (with 85 refs.) summarizes the recent literature on the adsorption of common aromatic pollutants by using modified metal-organic frameworks (MOFs). Four kinds of aromatic pollutants are discussed, namely benzene homologues, polycyclic aromatic hydrocarbons (PAHs), organic dyes and their intermediates, and pharmaceuticals and personal care products (PPCPs). MOFs are shown to be excellent adsorbents that can be employed to both the elimination of pollutants and to their extraction and quantitation. Adsorption mechanisms and interactions between aromatic pollutants and MOFs are discussed. Finally, the actual challenges of existence and the perspective routes towards future improvements in the field are addressed.
Graphical abstract Recent advance on adsorption of common aromatic pollutants including benzene series, polycyclic aromatic hydrocarbons, organic dyes and their intermediates, pharmaceuticals and personal care products by metal-organic frameworks.
  相似文献   

10.
The β-adrenergic agonist brombuterol (BB) is illicitly used as an additive in animal feed to enhance the lean meat-to-fat ratio. The authors describe an ultrasensitive lateral flow immunochromatographic assay (LFIA) based on the use of surface enhanced Raman scattering (SERS) for the determination of brombuterol in swine meat and urine samples. Flower-like gold-silver core-shell bimetallic nanoparticles (referred to as AuNF@Ag) displaying strong SERS enhancement were synthesized, characterized and used as the substrate for the preparation of the LFIA. Polyclonal antibody against brombuterol was immobilized on the surface of the AuNF@Ag particles carrying the Raman reporter 4-mercaptobenzoic acid (MBA). After performing an LFIA, the Raman scattering intensity of MBA on the test line was measured and used for quantitation of brombuterol. Figures of merit of this assay procedure include (a) duration of LFIA process of 15 min; (b) an IC50 value (e.g. the concentration of brombuterol producing 50% of signal inhibition in standard curve) of 380 pg mL-1; and (c) a limit of detection as low as 0.5 pg mL-1. The LFIA is selective over the molecules salbutamol, ractopamine, phenylethanolamine A, isoproterenol and phenylephrine, but shows a 8.5% cross-reactivity to clenbuterol, probably due to the high structural similarity. Swine meat and urine samples spiked with different amounts of brombuterol were analyzed by this method and gave recoveries between 95.8 and 108.0%, and relative standard deviations between 2.0 and 6.3% (for n = 3).
Graphical abstract Schematic presentation of the lateral flow immunochromatographic assay (LFIA) based on surface enhanced Raman scattering (SERS) using flower-like gold-silver core-shell nanoparticles. It is capable of detecting brombuterol in swine meat and urine samples with high sensitivity and specificity.
  相似文献   

11.
The authors report that the peroxidase-like activity of Au@Pt core-shell nanohybrids (Au@PtNHs) is selectively inhibited by cysteine. This finding has led to  a highly sensitive colorimetric assay for cysteine that is based on the nanohybrid-catalyzed oxidation of TMB by H2O2 to form a blue product. The method has a detection limit of 5.0 nM and a linear range from 10 nM to 20 μM. The assay is highly selective over other amino acids. It was successfully applied to the determination of cysteine in an injection containing a mixture of amino acids.
Graphical abstract The peroxidase-like activity of Au@Pt core-shell nanohybrids (Au@PtNHs) is selectively inhibited by cysteine, enabling the determination of cysteine.
  相似文献   

12.
Conducting polymers possess good conductivity, can be easily modified, have a particular redox activity. Noble metal nanomaterials, in turn, possess high conductivity, catalytic properties and large surface-to-volume ratios. Synergistic materials consisting of both conducting polymer and metal nanomaterial therefore are most useful materials for use in electrochemical immunosensors with improved sensitivity and specificity. This review (with 75 references) gives an overview on advances in conducting polymer based noble metal nanomaterial hybrids for amperometric immunoassay of the 13 most common tumor markers. The review is divided into the following sections: (1) Polyaniline based noble metal nanomaterial hybrids; (2) Polyaniline derivative-based noble metal nanomaterial hybrids; (3) Polypyrrole-based noble metal nanomaterial hybrids. A final section covers future perspectives regarding challenges on the design of electrochemical immunoassays.
Graphical abstract Advances on conducting polymer and noble metal nanomaterial hybrids for amperometric immunoassay of tumor marker are reviewed. Future perspectives regarding challenges on the construction of electrochemical immunosensing interface for tumor marker are discussed.
  相似文献   

13.
A composite consisting of chitosan containing azidomethylferrocene covalently immobilized on sheets of reduced graphene oxide was drop-casted on a polyester support to form a screen-printed working electrode that is shown to enable the determination of nitrite by cyclic voltammetry and chronoamperometry. Both reduction and oxidation of nitrite can be accomplished due to the high electron-transfer rate of this electrode. Under optimal experimental conditions (i.e. an applied potential of 0.7 V vs. Ag/AgCl in pH 7.0 solution), the calibration plot is linear in the 2.5 to 1450 μM concentration range, with an ~0.35 μM limit of detection (at a signal-to-noise ratio of 3). The sensor was successfully applied to the determination of nitrite in spiked mineral water samples, with recoveries ranging between 95 and 101 %.
Graphical abstract We describe the design of ferrocene-functionalized reduced graphene oxide electrode and its electrocatalytic properties towards the determination of nitrite. Compared to a reduced graphene oxide electrode, the sensor exhibits enhanced electrocatalytic activity towards both oxidation and reduction of nitrite.
  相似文献   

14.
The review (with 95 refs.) starts with an introduction that addresses the need for magnetic actuation in microfluidics. A second section describes the equations governing magnetic micromixing, with subsections on magnetic equations, fluid flow equations, and on convection–diffusion equations. The next section specifically covers magnetically actuated micromixers, with subsections on those actuated by external permanent magnets, by electromagnets, by microstirrers, and on micromixers with integrated electrodes. The conclusion summarizes the state of the art and addresses current challenges and trends.
Graphical abstract In this review, micromixers are classified into four types according to drive mode including external permanent magnet, electromagnet, microstirrer and the integrated electrode. The basic governing equations and operating rules of magnetic micromixers are given. The review is supposed to provide a helpful reference for those intending to study this field.
  相似文献   

15.
A facile, one-pot green method is presented for the preparation of water-soluble luminescent copper nanoclusters (Cu-NCs) from copper dichloride and cysteine as the precursor and stabilizer, respectively. The Cu-NCs are characterized by high resolution transmission electron microscopy, X-ray photoelectron spectroscopy, fluorescence, UV–Vis, and Raman spectroscopy. The Cu-NCs have an average size of 3.5 nm and are stable in aqueous solution at least for 2 weeks. Under photo excitation with 365 nm light, the Cu-NCs display strong green fluorescence with the maximum of emission at 490 nm and a quantum yield of 5.6 %. Fluorescence is quenched by Cr(VI) ion, and this effect was exploited to develop a highly selective method for the determination of Cr(VI). The detection limit of this probe is as low as 43 nM.
Graphical Abstract A facile, one-pot, “green” synthetic route was developed for preparing water-soluble luminescent copper nanoclusters (CuNCs) by using copper chloride and cysteine as the precursor and stabilizer, respectively. Their fluorescence is quenched by Cr(VI) ion, and this is exploited in a sensitive assay for Cr(VI) ions.
  相似文献   

16.
Hetero-dimeric magnetic nanoparticles of the type Au-Fe3O4 have been synthesised from separately prepared, differently shaped (spheres and cubes), monodisperse nanoparticles. This synthesis was achieved by the following steps: (a) Mono-functionalising each type of nanoparticles with aldehyde functional groups through a solid support approach, where nanoparticle decorated silica nanoparticles were fabricated as an intermediate step; (b) Derivatising the functional faces with complementary functionalities (e.g. amines and carboxylic acids); (c) Dimerising the two types of particles via amide bond formation. The resulting hetero-dimers were characterised by high-resolution TEM, Fourier transform IR spectroscopy and other appropriate methods.
Graphical Abstract Nano-LEGO: Assembling two types of separately prepared nanoparticles into a hetero-dimer is the first step towards complex nano-architectures. This study shows a solid support approach to combine a gold and a magnetite nanocrystal.
  相似文献   

17.
The authors describe a method for the fabrication of a nanohybrid composed of carbon dots (C-dots) and gold nanoparticles (AuNPs) by in-situ reduction of C-dots and hydroauric acid under alkaline conditions. The process does not require the presence of surfactant, stabilizing agent, or reducing agent. The hybrid material was deposited in a glassy carbon electrode (GCE), and the modified GCE exhibited good electrocatalytic activity toward the oxidation of nitrite due to the synergistic effects between carbon dots and AuNPs. The findings were used to develop an amperometric sensor for nitrite. The sensor shows a linear response in the concentration range from 0.1 μmol?L-1 to 2 mmol?L-1 and a low detection limit of 0.06 μmol?L-1 at the signal-to-noise ratio of 3.
Graphical abstract Fabrication, characterization and electrochemical behavior of a glassy carbon electrode modifid with carbon dots and gold nanoparticles for sensing nitrite in lake water.
  相似文献   

18.
A voltammetric analytical assay for the selective quantification of vanillin is described. It is based on the use of a gold nanoparticle-modified screen-printed carbon electrode (SPCE) modified with graphene quantum dots (GQD) in a Nafion matrix. The GQD were synthesized by an acidic thermal method and characterized by UV-Vis, photoluminescence, and FTIR spectroscopy. The modified SPCE displays a strongly enhanced response to vanillin. Linear sweep voltammetry (LSV) and differential pulse voltammetry (DPV) were applied to optimize the methods. The analytical assay has linear responses in the 13 to 660 μM and 0.66 to 33 μM vanillin concentration ranges. The detection limits are 3.9 μM and 0.32 μM when using LSV and DPV, respectively. The analytical assay is selective and stable. It was applied to the determination of vanillin in several food samples with satisfactory results. Recoveries from spiked samples ranged between 92.1 and 113.0%.
Graphical abstract The selective and sensitive quantification of vanillin is carried out by the use of a gold nanoparticle-modified screen-printed carbon electrode modified with graphene quantum dots in a Nafion matrix.
  相似文献   

19.
The paper reports on a method for the detection of nanocellulose (NC) in consumer products by making use of a combination of (a) liquid-liquid extraction with an ionic liquid, and (b) size characterization by asymmetric flow field-flow fractionation (AF4) coupled to multi-angle light scattering (MALS) and refractive index (RI) detection. Both AF4 and MALS are viable tools for characterizing the size of the nanofibers. Sample preparation is easy, and the extraction efficiency of the method is 80.9 ± 1.8% (n = 5). It was applied to the detection of NC in toothpaste and coconut foodstuff to verify the practicability of the method.
Graphical abstract Nanocellulose (NC) monitoring from coconut products and toothpaste and its size characterization by liquid-liquid extraction and asymmetric flow field-flow fractionation equipped with multi-angle light scattering and refractive index detection (AF4-MALS-RI).
  相似文献   

20.
Various kinds of nanomaterials have been described in recent years that represent stable and low-cost alternatives to biomolecules (such as enzymes) for use in (bio)analytical methods. The materials typically include, metal/metal oxides, metal complexes, nanocomposites, porphyrins, phthalocyanines, smart polymers, and carbonaceous nanomaterials. Due to their biomimetic and other properties, such nano-materials may replace natural enzymes in chemical sensors, biosensors, and in various kinds of bioassays. This overview (with 252 references) highlights the analytical potential of such nanomaterials. It is divided into sections on (a) the types of nanomaterials according to their intrinsic nature, (b) non-enzymatic sensor designs (including electrochemical, colorimetric, fluorescent and chemiluminescent methods), and (c), applications of non-enzymatic sensors in the biomedical, environmental and food analysis fields. We finally address current challenges and future directions.
Graphical abstract This review discusses different types of nanomaterials, which are explored as a potential biomimetic material to replace the natural enzyme in the field of biosensors, and have found widespread applications in biomedical, food and environmental analysis.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号