首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An aptamer based method is described for the electrochemical determination of ampicillin. It is based on the use of DNA aptamer, DNA functionalized gold nanoparticles (DNA-AuNPs), and single-stranded DNA binding protein (ssDNA-BP). When the aptamer hybridizes with the target DNA on the AuNPs, the ssDNA-BP is captured on the electrode surface via its specific interaction with ss-DNA. This results in a decreased electrochemical signal of the redox probe Fe(CN)6 3? which is measured best at a voltage of 0.188 mV (vs. reference electrode). In the presence of ampicillin, the formation of aptamer-ampicillin conjugate blocks the further immobilization of DNA-AuNPs and ssDNA-BP, and this leads to an increased response. The method has a linear reposne that convers the 1 pM to 5 nM ampicillin concentration range, with a 0.38 pM detection limit (at an S/N ratio of 3). The assay is selective, stable and reproducible. It was applied to the determination of ampicillin in spiked milk samples where it gave recoveries ranging from 95.5 to 105.5%.
Graphical abstract Schematic of a simple and sensitive electrochemical apta-biosensor for ampicillin detection. It is based on the use of gold nanoparticles (AuNPs), DNA aptamer, DNA functionalized AuNPs (DNA-AuNPs), and single-strand DNA binding protein (SSBP).
  相似文献   

2.
This article describes a sensitive impedimetric method for the determination of human blood coagulation factor IX protein (FIX) which is present in extremely low concentration in serum. An interdigitated electrode (IDE) whose surface was layered with zinc oxide was modified with two kinds of probes. One is an antibody, the other an aptamer against FIX. A comparative study between anti-FIX aptamer and anti-FIX antibody showed the aptamer to possess higher affinity for FIX. A sandwich aptamer assay was worked out by using the FIX-binding aptamer on the surface of the IDE. It has a detection limit as low as 10 pM which makes it 4 to 30-fold more sensitive than any other method reported for FIX. Moreover, to practice detection in clinical samples, FIX was detected from the human blood serum by spiking. In our perception, the sensitivity of the ZnO-modified IDE presented here makes it a promising tool for sensing clinically relevant analytes that are present in very low (sub-pM) concentrations.
Graphical Abstract ?
  相似文献   

3.
A fluorometric aptamer-based assay for ochratoxin A (OTA) is described. It is making use of magnetic separation and a cationic conjugated fluorescent polymer. Amino-tagged aptamer (Apt) against OTA is immobilized on magnetic beads (MBs) to form a conjugate of type Apt-MBs. The immobilized aptamer is partially complementary to carboxyfluorescein-labeled DNA which binds to the Apt-MBs via hybridization if OTA is absent. Only few FAM-DNA will remain in the supernatant after magnetic separation, and only weak fluorescence resonance energy transfer (FRET) occurs on addition of the fluorescent polymer. If, however, OTA is present, it will bind to the aptamer and prevent the hybridization between Apt-DNA and FAM-DNA. This results in the presence of large amounts of FAM-DNA in the supernatant after magnetic separation. On addition of fluorescent polymer, efficient FRET occurs from the polymer to FAM-DNA. Fluorescence, best measured at excitation/emission peaks of 370/530 nm, increases with increasing concentrations of OTA. This assay is highly sensitive and selective. The detection limit is as low as 0.11 ng mL?1. This is 6 times lower than the aptamer assay without using the fluorescent polymer. Conceivably, this method has a wider scope in that it may be extended to other mycotoxins by simply changing the aptamer.
Graphical Abstract Schematic of a fluorometric aptamer assay for ochratoxin A (OTA). It is based on magnetic separation coupled with a cationic conjugated polymer (PFP).
  相似文献   

4.
Cobalt oxyhydroxide (CoOOH) nanosheets are efficient fluorescence quenchers due to their specific optical properties and high surface area. The combination of CoOOH nanosheets and carbon dots (CDs) has not been used in any aptasensor based on fluorescence quenching so far. An aptamer based fluorometric assay is introduced that is making use of fluorescent CDs conjugated to the aptamer against methamphetamine (MTA), and of CoOOH nanosheets which reduce the fluorescence of the CDs as a quencher. The results revealed that the conjugated CDs with aptamers were able to enclose the CoOOH nanosheets. Consequently, fluorescence is quenched. If the aptamer on the CD binds MTA, the CDs are detached from CoOOH nanosheets. As a result, fluorescence is restored proportionally to zhe MTA concentration. The fluorometric limit of detection is 1 nM with a dynamic range from 5 to 156 nM. The method was validated by comparing the results obtained by the new method to those obtained by ion mobility spectroscopy. Theoretical studies showed that the distance between CoOOH nanosheet and C-Ds is approximately 7.6 Å which can illustrate the possibility of FRET phenomenon. The interactions of MTA and the aptamer were investigated using molecular dynamic simulation (MDS).
Graphical abstract Carbon dots (C-Ds) were prepared from grape leaves, conjugated to aptamer, and adsorbed on CoOOH nanosheets. So, the fluorescence of C-Ds is quenched. On addition of MTA, fluorescence is restored.
  相似文献   

5.
The authors describe a method for signal amplification in electrochemical aptasensors. It is based on the induction of an increased electrochemical current by the aptamer captured on a glassy carbon electrode (GCE). The phosphate groups on the aptamer backbone are brought to reaction with added molybdate to form a redox-active molybdophosphate precipitate on the surface of the GCE that generates a strong electrochemical current. To further enhance sensitivity, gold nanorods (GNRs) were selected as a support for the immobilization of aptamers. The aptasensor was applied to the determination of the cancer biomarker carcinoembryonic antigen (CEA) in a sandwich format. Antibody against CEA, CEA (antigen) and GNRs modified with CEA aptamer  were sequentially captured on the GCE. The resulting aptasensor, best operated at a voltage as low as 0.18 V vs. Ag/AgCl, is highly sensitive and has a wide linear range that extends from 0.1 pg·mL?1 to 10 ng·mL?1 of CEA. This amplification strategy uses an aptamer as both the recognition probe and signal probe and therefore simplifies signal transduction. Conceivably, this detection scheme may be adapted to numerous other electrochemical bioassays if respective antibodies and aptamers are available.
Graphical abstract Schematic presentation of an electrochemical aptasensor based on aptamer induced electrochemical current for the detection of cancer biomarker carcinoembryonic antigen (CEA). Gold nanorods (GNR) are chosen for the immobilization of aptamers to increase the loading of aptamers.
  相似文献   

6.
The authors describe a dual signal amplification strategy for improving the sensitivity of electrochemical aptasensor. Hydroxyapatite nanoparticles (HAP-NPs) serve as the support for deposition of the respective aptamer. Both the HAP-NPs and the aptamer contain phosphate groups which can react with molybdate to form a redox-active molybdophosphate precipitate on the surface of a glassy carbon electrode (GCE). On applying a relatively low voltage of 0.21 V (vs. Ag/AgCl), a current is generated whose intensity depends on the concentration of the analyte. The cancer biomarker platelet-derived growth factor BB (PDGF-BB) is chosen as a model antigen (analyte). The assay works by sequential deposition of antibody against PDGF-BB, analyte (PDGF-BB) and anti-PDGF-BB aptamer modified HAP-NPs on the GCE to form a sandwich structure. The amperometric signal is linear in the 0.1 pg.mL?1 to 10 ng.mL?1 PDGF-BB concentration range, with a detection limit as low as 50 fg.mL?1. The assay was successfully applied to the determination of PDGF-BB in serum samples. In our perception, this signal amplification strategy has a wide scope in that it can be adapted to the preparation of other aptasensors for biomarkers and related species.
Graphical abstract Schematic of an electrochemical aptasensor based on dual signal amplification strategy. It was applied to the detection of cancer biomarker platelet-derived growth factor BB (PDGF-BB). Hydroxyapatite (HAP) nanoparticles were chosen for the immobilization of aptamers to increase the loading of aptamers.
  相似文献   

7.
Graphene oxide doped with nitrogen and sulfur was decorated with gold nanoparticles (AuNP-SN-GO) and applied as a substrate to modify a glassy carbon electrode (GCE). An aptamer against the model protein thrombin was self-assembled on the modified GCE which then was exposed to thrombin. Following aptamer-thrombin interaction, biotin-labeled DNA and aptamer 2 are immobilized on another AuNP-SN-GO hybrid and then are reacted with the thrombin/AuNP-SN-GO/GCE to form a sandwich. The enzyme label horseradish peroxidase (HRP) was then attached to the electrode by biotin–avidin interaction. HRP catalyzes the oxidation of hydroquinone by hydrogen peroxide. This generates a strong electrochemical signal that increases linearly with the logarithm of thrombin concentration in the range from 1.0?×?10?13 M to 1.0?×?10?8 M with a detection limit of 2.5?×?10?14 M (S/N?=?3). The assay is highly selective. It provides a promising strategy for signal amplification. In our perception, it has a large potential for sensitive and selective detection of analytes for which appropriate aptamers are available.
Graphic abstract A sandwich-type electrochemical aptasensor is fabricated for detection of thrombin using a glassy carbon electrode modified with nitrogen- and sulfur-doped graphene oxide and gold nanoparticles.
  相似文献   

8.
An electrochemical nanoaptasensor is described that is based on the use of a glassy carbon electrode (GCE) modified with electrodeposited silver nanoparticles (AgNPs). An aptamer (Apt) against trinitrotoluene (TNT) was then immobilized on the AgNPs. The addition of TNT to the modified GCE leads to decrease in peak current (typically measured at a potential of ?0.45 V vs. Ag/AgCl) of riboflavin which acts as an electrochemical probe. Even small changes in the surface (as induced by binding of Apt to TNT) alter the interfacial properties. As a result, the LOD is lowered to 33 aM, and the dynamic range extends from 0.1 fM to 10 μM without sacrificing specificity.
Graphical abstract Schematic presentation of a nanoaptasensor which is based on a glassy carbon electrode (GCE) modified with electrodeposited silver nanoparticles (AgNPs) and aptamer (Apt). It was applied to the detection of 2,4,6-trinitrotoluene (TNT) with the help of riboflavin (RF) as a redox probe.
  相似文献   

9.
The authors describe a disposable electrochemical immunosensor strip for the detection of the Japanese encephalitis virus (JEV). The assay is based on the use of a screen printed carbon electrode (SPCE) modified with carbon nanoparticles (CNPs) that were prepared from starch nanoparticles and deposited on the SPCE working electrode whose surface was functionalized with 3-aminopropyl triethoxysilane. Next, antibody of JEV was immobilized on the surfaces of the CNPs. The analytical performance of immunosensor strip was characterized using cyclic voltammetry (with hexacyanoferrate as the redox probe) and electrochemical impedance spectroscopy. The deposition of CNPs enhances the electron transfer kinetics and current intensity of the SPCE by 63% compared to an unmodified SPCE. Under optimized conditions, the calibration plot is linear within the 5–20 ng·mL?1 JEV concentration range, the limit of detection being 2 ng·mL?1 (at an S/N ratio of 3), and the assay time is 20 min. This immunosensor strip was successfully applied to the detection of JEV in human serum samples. It represents a cost-effective alternative to conventional diagnostic tests for JEV.
Graphical abstract A disposable carbon nanoparticles modified screen printed carbon electrode (SPCE) immunosensor strip for Japanese encephalitis virus (JEV) detection is described. A limit of detection of 2 ng·mL?1 and an assay time of 20 min were achieved.
  相似文献   

10.
An electrochemiluminescent (ECL) aptamer based method is described for the determination of thrombin. Three-dimensional nitrogen-doped graphene oxide (3D-NGO) was placed on a glassy carbon electrode (GCE) to provide an electrode surface that displays excellent electrical conductivity and acts as a strong emitter of ECL. The modified electrode was further coated with chitosan via electrodeposition. Finally, the amino-modified aptamer was immobilized on the modified GCE. The interaction between thrombin and aptamer results in a decrease in ECL. The assay has a linear response in the 1 fM to 1 nM thrombin concentration range and a 0.25 fM lower detection limit (at an S/N ratio of 3). The method was applied to the determination of thrombin in spiked human plasma samples, and recoveries ranged between 94 and 105% (with RSDs of <3.6%). The calibration plot was recorded at potential and wavelength of fluorescence emission (wavelength:?445 nm; potential:?0 to -2 V).
Graphical abstract A bare glassy carbon electrode (GCE) does not display electrochemiluminescence (ECL). If, however, nitrogen-doped graphene quantum dots, chitosan, and three-dimensional nitrogen-doped graphene oxide (NGQD-chitosan/3D-NGO) are electrodeposited on the GCE, strong ECL can be observed. The ECL intensity decreased after aptamer and bovine serum albumin (BSA) were dropped onto the electrode (curve a). However, the ECL further decreases after addition of thrombin (TB; curve b).
  相似文献   

11.
This article reports on a novel aptamer-based platform for the quantitation of urea by using an aptamer with high affinity and selectivity for urea. The surface of a glassy carbon electrode (GCE) was modified by drop casting a cocktail consisting of carbon nanotubes and reduced graphene oxide (rGO) decorated with platinum-gold nanoparticles. The urea aptamer was then immobilized on the nanocomposite via covalent conjugation. Cyclic voltammetry and electrochemical impedance spectroscopy were employed to trace the modification of the GCE. Binding of urea caused the aptamer to be folded, and this result in an inhibition of the interfacial charge transfer rate when using hexacyanoferrate as an electrochemical redox probe. The change in redox current was quantified by differential pulse voltammetry, typically at a working voltage of 0.22 V vs. Ag/AgCl. The assay has a 1.9 pM detection limit, and the response is linear up to 150 nM concentration of urea. The superior selectivity and affinity of aptamer-modified GCE makes it a most useful tool for analysis of urea present in very low concentrations.
Graphical abstract Schematic representation of different steps of aptasensor fabrication.
  相似文献   

12.
The authors describe an electrochemical aptamer based assay for the determination of the serine protease lysozyme in very low (pM) concentrations. The method is based on the formation of a complex between anti-lysozyme aptamer fragments and lysozyme, and on electrochemical detection by differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). The surface of a glassy carbon electrode was modified with a nanocomposite consisting of gold nanoparticles and electrochemically reduced graphene oxide nanosheets (AuNPs/erGO), and the thiolated aptamer was then linked to the AuNPs by self-assembly through Au-S bonds. The interaction of immobilized aptamers with lysozyme leads to the decreased peak current in DPV and increased charge transfer resistance (Rct) in EIS when using hexacyanoferrate or Methylene Blue as a redox probe. The calibration plot, when applying EIS and working at a typical voltage of ?0.22 V (vs. SCE), is linear over 1.0 to 104.3 pM concentration range, with a detection limit of 0.06 pM (at a signal-to-noise ratio of 3). The respective data for DPV are a 9.6–205.5 pM linear range with a detection limit of 0.24 pM. Depending on the redox marker applied, the method works in the “signal-off” or “signal-on” mode in DPV and EIS protocols, respectively. The sensing interface is high specific for lysozyme and not affected by other proteins. The method was applied to the determination of lysozyme in spiked diluted human serum, and the results agreed well with data obtained with a standard ELISA.
Graphical abstract The surface of a glassy carbon electrode was modified with a nanocomposite consisting of gold nanoparticles and electrochemically reduced graphene oxide nanosheets (AuNPs/erGO). Then, the thiolated aptamer was linked to the AuNPs by self-assembly through Au-S bonds. The modified electrode was applied to the determination of lysozyme with “signal off” and “signal on” strategies.
  相似文献   

13.
An amperometric aptasensor is reported for the electrochemical determination of the epithelial cell adhesion molecule (EpCAM). It is based on a combination of EpCAM-driven toehold-mediated DNA recycling amplification, the specific recognition of EpCAM aptamer, and its binding to EpCAM. Hairpin probe 1 (Hp1) with a toehold region was modified with a 5′-thiol group (5’-SH) and self-assembled onto the surface of a gold electrode. Upon addition of EpCAM, the probe A (a 15-mer) is liberated from the aptamer/probe A complex and then hybridizes with the toehold domain of Hp1. This results in the exposure of another toehold for further hybridizing with hairpin probe 2 (Hp2) to displace probe A in the presence of Hp2 that was labeled with the electrochemical probe Methylene Blue (MB). Subsequently, liberated probe A is hybridized again with another Hp1 to start the next round of DNA recycling amplification by reusing probe A. This leads to the formation of plenty of MB-labeled DNA strands on the electrode surface and generates an amplified current. This 1:N probe-response amplification results in ultrasensitive and specific detection of EpCAM, with a 20 pg·mL?1 detection limit. The electrode is highly stable and regenerable. It was successfully applied to the determination of EpCAM in spiked human serum, urine and saliva, and thus provides a promising tool for early clinical diagnosis.
Graphical abstract Schematic illustration of the electrochemical detection for EpCAM. The method is based on aptamer-based recognition and EpCAM-driven toehold-mediated DNA recycling amplification. Hp1: Hairpin probe 1; Hp2: Hairpin probe 2; MB: Methylene blue; MCH: 6-Mercapto-1-hexanol; EpCAM: Epithelial cell adhesion molecule.
  相似文献   

14.
The fucosylated Golgi protein 73 (fuc-GP73) has been used as a criterion to distinguish hepatocellular carcinoma (HCC) from other chronic liver diseases. We describe an amperometric aptasensor for ultrasensitive detection of fuc-GP73 that uses a thiolated aptamer against GP73 as the capture probe, and gold nanoparticles (AuNPs) modified with Avidinlens culinaris agglutinin (A-LCA) as the detection probe. The AuNPs on the surface of a gold electrode provide a large surface for immobilization of A-LCA, so that they can be heavily loaded with biotinylated horse radish peroxidase (B-HRP) via avidin-biotin interactions. This results in enhanced analytical sensitivity. Under optimized conditions and a typical working potential as low as 48 mV (vs. SCE), the dynamic response of the electrode covers the 10 pg·mL?1 to 25 ng·mL?1 fuc-GP73 concentation range, with a 7 pg·mL?1 detection limit (for an S/N ratio of 3). The assay is precise, selective and reproducible. It was applied to the determination of fuc-GP73 in serum.
Graphical abstract Schematic of an electrochemical aptasensor for the determination of fucosylated golgi protein 73 (fuc-gp73) based on the avidin-Lens culinaris agglutinin (A-LCA) and biotinylated horse radish peroxidase (B-HRP). It was applied to serum analysis with good sensitivity, selectivity and reproducibility.
  相似文献   

15.
The authors have synthesized spindle-like ZnO nanorods closely anchored to CdS nanoparticles (NPs) placed on gold NPs (ZnO-CdS@Au). It is shown that the ZnO-CdS@Au nanocomposite can serve as a photoactive material for use in photoelectrochemical (PEC) detection by efficiently absorbing light and then promoting electron transfer. A visible light-driven PEC detection platform for tetracycline (TET) was fabricated by placing the nanocomposite on an ITO and immobilizing the TET-binding aptamer as biorecognition element. PEC can be quantified by applying a bias potential of +?0.4 V (vs. SCE) and visible light irradiation. The aptamer on the electrode specifically captures the TET present in the solution to produce a restored photocurrent signal through the reaction between the captured TET and the photogenerated holes. The electrode has a linear response in the 50 to 200 nM TET concentration range, with a 4.5 nM detection limit (at an S/N ratio of 3). In our perception, this novel PEC detection strategy based on ZnO-CdS@Au nanocomposite demonstrated an ultrasensitive method for TET detection with high selectivity and good stability.
Graphical abstract Gold nanoparticles and CdS nanoparticles were deposited on the spindle-like ZnO nanorod surface (ZnO-CdS@Au). Photoelectrochemical detection of tetracycline (TET) was realized with high selectivity and good stability utilizing ZnO-CdS@Au as transducer and TET-binding aptamer as biorecognition element.
  相似文献   

16.
A nanocomposite prepared from reduced graphene oxide (rGO) and silver nanoparticles (AgNPs) is used in an electrochemical aptasensor for the sensitive and selective determination of the antibiotic chloramphenicol (CAP). The nanocomposite was obtained by electrostatic assembly of AgNPs on the surface of polyelectrolyte-functionalized rGO and then used to modify a glassy carbon electrode. The biosensor is then obtained by immobilizing the aptamer against CAP. When incubated with solutions of CAP, the sensor surface is loaded with CAP due to aptamer recognition. The captured CAP can be electrochemically reduced to yield a current that is strongly enhanced as a result of the excellent electrocatalysis property of the graphene/AgNP-nanocomposite. Under optimum conditions, the calibration plot is linear in the 0.01 to 35 μM concentration range, with a 2 nM detection limit (at 3σ). The sensor is reproducible, stable, selective over homologous interferents, and performs excellently when analyzing CAP in milk samples.
Graphical Abstract A graphene/silver nanoparticle-based electrochemical aptasensor is designed for the selective determination of the antibiotic chloramphenicol (CAP). The excellent electrocatalytic reduction of CAP specifically captured onto the electrode surface enables the sensitive electrochemical signal transduction of the biosensor by linear sweep voltammetry (LSV).
  相似文献   

17.
The authors report on an amperometric method for the determination of glycoprotein by using an aptamer as the bioreceptor. The detection scheme is making use of aggregated citrate-capped silver nanoparticles (AgNPs) on a gold electrode. Aggregation is accomplished by addition of 4-mercaptophenylboronic acid (MPBA) which acts as a cross-linker due to the formation of Ag-S bonds and of boronate esters. A thiolated DNA aptamer was then attached to the electrode in order to capture glycoprotein. Once captured, the glycoprotein reacts with MPBA through the formation of boronate esters. The electrochemical signal is thus amplified by the formation of a network of AgNPs which act as redox reporters. To demonstrate the feasibility of the method, prostate specific antigen (PSA) was chosen as a model analyte. The detection limit for PSA is as low as 0.2 pg mL?1. In our preception, this method provides a powerful tool for studying the glycan function in biological and physiological processes.
Graphical abstract Schematic of the electrochemical method for the detection of glycoprotein. It is based on 4-mercaptophenylboronic acid (MPBA)-induced in situ formation of citrate-capped silver nanoparticle (AgNP) aggregates as the redox reporters. The MPBA molecules act as the cross-linkers of AgNP assembly based on the formation of Ag-S bonds and on boronate ester covalent interactions.
  相似文献   

18.
The authors introduce a new kind of surface artificial biomimetic receptor, referred to as aptameric imprinted polymer (AIP), for separation of biological macromolecules. Highly dispersed magnetic nanoparticles (MNPs) were coated with silica and then functionalized with methacrylate groups via silane chemistry. The aptamer was covalently immobilized on the surface of nanoparticles via a “thiol-ene” click reaction. Once the target analyte (bovine serum albumin; BSA) has bound to the aptamer, a polymer is created by 2-dimensional copolymerization of short-length poly(ethylene glycol) and (3-aminopropyl)triethoxysilane. Following removal of BSA from the polymer, the AIP-MNPs presented here can selectively capture BSA with a specific absorbance (κ) as high as 65. When using this AIP, the recovery of BSA from spiked real biological samples is >97%, and the adsorption capacity is as high as 146 mg g?1. In our perception, this method has a wide scope in that it may be applied to the specific extraction of numerous other biomolecules.
Graphical abstract Schematic presentation of the AIP (aptamer-imprinted polymer) introduced here. The surface of silica coated magnetic nanoparticles is modified with a polymer that is covalently modified with an aptamer against bovine serum albumin (BSA).
  相似文献   

19.
An F0F1-ATPase-based aptasensor is described for the fluorometric determination of Vibrio parahaemolyticus. Chromatophores containing F0F1-ATPases were first prepared from Rhodospirillum rubrum cells. Then, an aptamer-functionalized chromatophore acts as the capture probe, and a chromatophore labeled with the pH probe fluorescein acts as the signalling probe. In the presence of V. parahaemolyticus, the rotation rate of F0F1-ATPase is decreased due to the formation of the aptamer-chromatophore complex. This leads to a retarded proton flux out of the chromatophores. As a result, the pH value inside the chromatophores is reduced, and the fluorescence of the pH probe F1300 is accordingly decreased. The relative fluorescence varies linearly over the 15 to 1.5?×?106 cfu·mL?1 Vibrio parahaemolyticus concentration range, and the limit of detection is 15 cfu·mL?1. The method was applied to analyze artificially contaminated salmon samples where it showed excellent perfomance.
Graphical abstract In this assay, aptamer functionalized chromatophores act as a capture probe, and the fluoresce in labeled chromatophores as signalling probe. The formation of aptamer-chromatophore complex leads to a retarded proton flux out of the chromatophores. As a result, the pH value inside the chromatophores is reduced, and fluorescence intensity is accordingly decreased.
  相似文献   

20.
A nanocomposite consisting of polyaniline and multiwalled carbon nanotubes was tethered with a thiolated thrombin-specific aptamer and placed on a glassy carbon electrode (GCE) to obtain a biosensor for thrombin that has a limit of detection of 80 fM. Tethering was accomplished via a thiol-ene reaction between thiolated thrombin aptamer (TTA) and oxidized polyaniline (PANI) that was chemically synthesized in the presence of solution-dispersed multiwalled carbon nanotubes (MWCNTs). The modified GCE exhibits a pair of well-defined redox peaks (at 50/?25 mV) of self-doped PANI in neutral solution, and the tethered TTA-thrombin interaction gives a decreased electrochemical signal. Cyclic voltammetry, scanning electron microscopy and ultraviolet visible spectroscopy were used to characterize the film properties. This amperometric aptasensor is sensitive, selective and reproducible. It was applied to the determination of thrombin in spiked human serum (0.2 to 4 nM) and gave recoveries that ranged from 95 to 102%.
Graphical abstract A nanocomposite consisting of polyaniline (PANI) and multiwalled carbon nanotubes (MWCNTs) was tethered with a thiolated thrombin aptamer (TTA) and placed on a glassy carbon electrode (GCE) to obtain a biosensor for thrombin that has a 80 f. detection limit.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号