首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hetero-dimeric magnetic nanoparticles of the type Au-Fe3O4 have been synthesised from separately prepared, differently shaped (spheres and cubes), monodisperse nanoparticles. This synthesis was achieved by the following steps: (a) Mono-functionalising each type of nanoparticles with aldehyde functional groups through a solid support approach, where nanoparticle decorated silica nanoparticles were fabricated as an intermediate step; (b) Derivatising the functional faces with complementary functionalities (e.g. amines and carboxylic acids); (c) Dimerising the two types of particles via amide bond formation. The resulting hetero-dimers were characterised by high-resolution TEM, Fourier transform IR spectroscopy and other appropriate methods.
Graphical Abstract Nano-LEGO: Assembling two types of separately prepared nanoparticles into a hetero-dimer is the first step towards complex nano-architectures. This study shows a solid support approach to combine a gold and a magnetite nanocrystal.
  相似文献   

2.
An electrochemical microsensor for chloramphenicol (CAP) was fabricated by introducing magnetic Fe3O4 nanoparticles (NPs) onto the surface of activated carbon fibers. This microsensor exhibited increased electrochemical response toward CAP because of the synergetic effect of the Fe3O4 NPs and the carbon fibers. Cyclic voltammograms were acquired and displayed three stable and irreversible redox peaks in pH 7.0 solution. Under optimized conditions, the cathodic current peaks at ?0.67 V (vs. Ag/AgCl). The calibration plot is linear in the 40 pM to 1 μM CAP concentration range, with a 17 pM detection limit (at a signal-to-noise ratio of 3). The sensor was applied to the determination of CAP in spiked sediment samples. In our perception, this electrocatalytic platform provided a useful tool for fast, portable, and sensitive analysis of chloramphenicol.
Graphical abstract A sensitive carbon fiber microsensor modified with Fe3O4 nanoparticles is found to display two cathodic peaks when detecting chloramphenicol at 100 mV·s?1 and at pH 7.0. The sensor was applied to the determination of chloramphenicol in sediment samples.
  相似文献   

3.
The authors report that carbon nitride quantum dots (CN QDs) exert a strong enhancing effect on the Cu(II)/H2O2 chemiluminescent system. Chemiluminescence (CL) intensity is enhanced by CN QDs by a factor of ~75, while other carbon nanomaterials have a much weaker effect. The possible mechanism of the effect was evaluated by recording fluorescence and CL spectra and by examining the effect of various radical scavengers. Emitting species was found to be excited-state CN QDs that produce green CL peaking at 515 nm. The new CL system was applied to the sensitive detection of H2O2 and glucose (via glucose oxidase-catalyzed formation of H2O2) with detection limits (3σ) of 10 nM for H2O2 and 100 nM for glucose. The probe was employed for glucose determination in human plasma samples with satisfactory results.
Graphical abstract The effect of carbon nitride quantum dots (CN QDs) on Cu(II)-H2O2 chemiluminescence reaction was studied and the new CL system was applied for sensitive detection of glucose based on the glucose oxidase (GOx)-catalyzed formation of H2O2.
  相似文献   

4.
A SERS-based aptasensor for ochratoxin A (OTA) is described. It is making use of Fe3O4@Au magnetic nanoparticles (MGNPs) and of Au@Ag nanoprobes modified with the Raman reporter 5,5-dithiobis-(2-nitrobenzoic acid; DTNB). Au-DTNB@Ag NPs were modified with the OTA aptamer (aptamer-GSNPs) and used as Raman signal probes. The SERS peak of DTNB at 1331 cm?1 was used for quantitative analysis. MGNPs modified with cDNA (cDNA-MGNPs) were used as capture probes and reinforced substrates. When the Au-DTNB@Ag-Fe3O4@Au complexes are formed through oligonucleotide hybridization, the Raman signal intensity of the Raman probe is significantly enhanced. If the OTA concentration in samples increases, more Raman signal probes (aptamer-GSNPs) will dissociate from the cDNA-MGNPs because more OTA aptamer is bound by OTA. This leads to a lower Raman signal after magnetic separation. Under the optimal conditions, the detection limit for OTA is 0.48 pg·mL?1 based on 3σ criterion. This is attributed to the multiple Raman signal enhancement and the good performance of the OTA aptamer. The good recovery and accuracy of the assay was confirmed by evaluating spiked samples of wine and coffee.
Graphical abstract Schematic of an aptamer based SERS assay for OTA by integrating Fe3O4@AuNPs (MGNPs) with Au-DTNB@Ag NPs with multiple signal enhancement. Aptamer modified Au-DTNB@Ag NPs are used as Raman probes, and MGNPs modified with cDNA are used as capture probes and reinforced substrates.
  相似文献   

5.
A novel photoelectrochemical (PEC) aptasensor with graphitic-phase carbon nitride quantum dots (g-C3N4; QDs) and reduced graphene oxide (rGO) was fabricated. The g-C3N4 QDs possess enhanced emission quantum yield (with an emission peak at 450 nm), improved charge separation ability and effective optical absorption, while rGO has excellent electron transfer capability. Altogether, this results in improved PEC performance. The method is making use of an aptamer against sulfadimethoxine (SDM) that was immobilized on electrode through π stacking interaction. Changes of the photocurrent occur because SDM as a photogenerated hole acceptor can further accelerate the separation of photoexcited carriers. Under optimized conditions and at an applied potential of +0.2 V, the aptasensor has a linear response in the 0.5 nM to 80 nM SDM concentration range, with a 0.1 nM detection limit (at S/N =?3). The method was successfully applied to the analysis of SDM in tap, lake and waste water samples.
Graphical abstract Graphitic-phase carbon nitride (g-C3N4) quantum dots (QDs) and reduced graphene oxide (rGO) were used to modify fluorine-doped SnO2 (FTO) electrodes for use in a photoelectrochemical (PEC) aptasensor. SDM oxidized by the hole on valance band (VB) of g-C3N4 QDs promote the separation of electron in the conductive band (CB), which made the changes of photocurrent signal.
  相似文献   

6.
The article describes the synthesis of core-shell magnetic nanoparticles (MNPs) of the type Fe3O4@MIL-100 (MIL standing for Material Institut Lavoisier), and their application as sorbent for magnetic solid-phase extraction (MSPE) of triclosan. The MNPs were prepared via circular self-assembly of ferric chloride and benzenetricarboxylic acid. The functionalized MNPs were characterized by transmission electron microscopy, FTIR and thermogravimetry. Following extraction, triclosan was eluted with ammoniacal methanol and then submitted to HPLC with UV detection. The amount of magnetic microspheres, sample pH and ionic strength, adsorption time, desorption time, desorption solvent and the volume of the eluent were optimized. Under optimum conditions, the method showed good linearity in the 0.1 to 50 mg·kg?1 triclosan concentration range in toothpaste samples. Other features include (a) intra-day and inter-day relative standard deviations (RSD, for n = 4) of <5.5 %, (b) a 30 μg·kg?1 limit of detection, and (c) extraction recoveries between 90.86 % and 101.1 %. The method was successfully applied to the determination of triclosan in children’s toothpaste.
Graphical abstract The article describes the synthesis of core-shell magnetic nanoparticles (MNPs) of the type Fe3O4@MIL-100, and their application as sorbent for magnetic solid-phase extraction (MSPE) of triclosan.
  相似文献   

7.
A method is described for the fluorometric determination of hypochlorite. It is making use of molybdenum disulfide quantum dots (MoS2 QDs) as a fluorescent probe. The QDs are prepared by hydrothermal reaction of sodium molybdate with glutathione. They possess diameters typically ranging from 1.4 to 3.8 nm, excellent stability in water, and blue photoluminescence (with excitation/emission peaks located at 315/412 nm and a quantum yield of 3.7%). The fluorescence of the QDs is statically quenched by hypochlorite, and the Stern-Volmer plot is linear. Hypochlorite can be detected in the 5–500 μM concentration range with a 0.5 μM detection limit. The method has been successfully applied to the determination of hypochlorite in spiked samples of tap water, lake water, and commercial disinfectants.
Graphical abstract Schematic of a method for the fluorometric determination of hypochlorite using MoS2 quantum dots as a fluorescent probe. It has been applied to hypochlorite assay in spiked samples of tap water, lake water, and commercial disinfectants.
  相似文献   

8.
Ionic liquid coated nanoparticles (IL-NPs) consisting of zero-valent iron are shown to display intrinsic peroxidase-like activity with enhanced potential to catalyze the oxidation of the chromogenic substrate 3,3′,5,5′-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide. This results in the formation of a blue green colored product that can be detected with bare eyes and quantified by photometry at 652 nm. The IL-NPs were further doped with bismuth to enhance its catalytic properties. The Bi-doped IL-NPs were characterized by FTIR, X-ray diffraction and scanning electron microscopy. A colorimetric assay was worked out for hydrogen peroxide that is simple, sensitive and selective. Response is linear in the 30–300 μM H2O2 concentration range, and the detection limit is 0.15 μM.
Graphical abstract Schematic of ionic liquid coated iron nanoparticles that display intrinsic peroxidase-like activity. They are capable of oxidizing the chromogenic substrate 3,3′,5,5′-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide. This catalytic oxidation generated blue-green color can be measured by colorimetry. Response is linear in the range of 30–300 μM H2O2 concentration, and the detection limit is 0.15 μM.
  相似文献   

9.
The paper describes a nonenzymatic amperometric H2O2 sensor that uses a nanocomposite consisting of Co3O4 nanoparticles (NPs) and mesoporous carbon nanofibers (Co3O4-MCNFs). The Co3O4 NPs were grown in situ on the MCNFs by a solvothermal procedure. The synergetic combination of the electrocatalytic activity of the Co3O4 NPs and the electrical conductivity of MCNFs as an immobilization matrix enhance the sensing ability of the hybrid nanostructure. The oxidation current, best measured at 0.2 V (vs. SCE) is linear in the 1 to 2580 μM H2O2 concentration range, with a 0.5 μM lower detection limit (at an S/N ratio of 3). The sensor is highly selective even in the presence of common electroactive interferents. It was applied to the determination of H2O2 in spiked milk samples.
Graphical abstract Schematic of the synthesis of a nanocomposite consisting of Co3O4 nanoparticles (NPs) and mesoporous carbon nanofibers (Co3O4-MCNFs) by a solvothermal procedure. It was used as electrocatalyst for direct oxidation of H2O2.
  相似文献   

10.
The synthesis of rattle-type nanostructured Fe3O4@SnO2 is described along with their application to dispersive solid-phase extraction of trace amounts of mercury(II) ions prior to their determination by continuous-flow cold vapor atomic absorption spectrometry. The voids present in rattle-type structures make the material an effective substrate for adsorption of Hg(II), and also warrant high loading capacity. The unique morphology, large specific surface, magnetism property and the synergistic effect of magnetic cores and SnO2 shells render these magnetic nanorattles an attractive candidate for solid-phase extraction of heavy metal ions.The sorbent was characterized by transmission electron microscopy, scanning electron microscopy, FTIR, energy-dispersive X-ray spectroscopy and by the Brunnauer-Emmett-Teller technique. The effects of pH value, adsorption time, amount of sorbent, volume of sample solutions, concentration and volume of eluent on extraction efficiencies were evaluated. The calibration plot is linear in the 0.1 to 40 μg·L?1 concentration range, and the preconcentration factor is 49. The detection limit is 28 ng·L?1. The sorbent was applied to the analysis of (spiked) river and sea water samples. Recoveries ranged from 97.2 to 100.5%.
Graphical abstract A yolk-shell structure based on a Fe3O4 core and SnO2 shell was developed as an efficient MSPE sorbent. A middle silica layer was etched by alkaline solution. The resulting sorbent was utilized for preconcentration of mercury ions from aqueous media.
  相似文献   

11.
Magnesium(II)-doped nickel ferrite (Mg–NiFe2O4) nanoparticles are introduced as a new adsorbent for magnetic solid phase extraction of lead(II) ions from aqueous solutions. The structure and morphology of the adsorbent was characterized by FTIR, X-ray diffraction and scanning electron microscopy. The effects of pH value, amount of adsorbent, type, concentration and volume of the eluent and adsorption/desorption time on the extraction efficiency were studied. Following elution with hydrochloric acid, Pb(II) ions were quantified by flame atomic absorption spectrometry. Under optimized conditions, the calibration graph is linear in the 0.5–125 ng mL?1 Pb(II) ion concentration range. Other figures of merit include (a) a 0.2 ng mL?1 limit of detection, (b) an enrichment factor of 200, (c) an intra-day relative standard deviation (for n =?6 at 50 ng mL?1) of 1.6%, and (d) an inter-day precision of 3.8%. The method was validated by the analysis of the certified reference material, NIST SRM 1566b. It was successfully applied to the determination of Pb(II) ion in spiked water samples, industrial wastewater and acidic lead battery waters.
Graphical abstract Schematic of the synthesis of Mg(II)-doped NiFeO4 nanoparticles and their application as a magnetic sorbent for solid-phase extraction of a Pb(II) ions prior to determination by flame atomic absorption spectrometry (FAAS).
  相似文献   

12.
Thin films of La2O3 were deposited onto glass substrates by ultrasonic spray pyrolysis. Their structural and morphological properties were characterized by X-ray diffraction, Fourier transform Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray photo-electron spectroscopy, Brunauer-Emmett-Teller and optical absorption techniques. The sensor displays superior CO2 gas sensing performance at a low operating temperature of 498 K. The signal change on exposure to 300 ppm of CO2 is about 75%, and the signal only drops to 91% after 30 days of operation.
Graphical abstract Schematic diagram of the CO2 gas sensing mechanism of an interconnected web-like La2O3 nanostructure in presence of 300 ppm of CO2 gas and at an operating temperature of 498 K.
  相似文献   

13.
The authors describe double-shell magnetic nanoparticles functionalized with 2-mercaptobenzothiazole (MBT) to give nanospheres of the type MBT-Fe3O4@SiO2@C). These are shown to be viable and acid-resistant adsorbents for magnetic separation of the heavy metal ions Ni(II), Cu(II) and Pb(II). MBT act as a binding reagent, and the carbon shell and the silica shell protect the magnetic core. Following 12 min incubation, the loaded nanospheres are magnetically separated, the ions are eluted with 2 M nitric acid and then determined by inductively coupled plasma-mass spectroscopy. The limits of detection of this method are 2, 82 and 103 ng L ̄1 for Ni(II), Cu(II), and Pb(II) ions, respectively, and the relative standard deviations (for n = 7) are 6, 7.8, and 7.4 %. The protocol is successfully applied to the quantitation of these ions in tap water and food samples (mint, cabbage, potato, peas). Recoveries from spiked water samples ranged from 97 to 100 %.
Graphical abstract Mercaptobenzothiazole-functionalized magnetic carbon nanospheres of type Fe3O4@SiO2@C were synthesized. Then applied for magnetic solid phase extraction of Ni(II), Cu(II) and Pb(II) from water and food samples with LOD of 0.002, 0.082 and 0.103 μg L?1 respectively.
  相似文献   

14.
The authors describe an ethylene glycol assisted precipitation method for synthesis of Er(III)/Yb(III)-doped BiF3 nanoparticles (NPs) at room temperature. Under 980-nm light irradiation, the NPs emit upconversion (UC) emission of Er(III) ions as a result of a two-photon absorption process. The temperature-dependent green emissions (peaking at 525 and 545 nm) are used to establish an unambiguous relationship between the ratio of fluorescence intensities and temperature. The NPs have a maximum sensitivity of 6.5?×?10?3 K?1 at 619 K and can be applied over the 291–691 K temperature range. The results indicate that these NPs are a promising candidate for optical thermometry.
Graphical abstract Schematic of the room-temperature preparation of Er(III)/Yb(III)-doped BiF3 nanoparticles with strongly temperature-dependent upconversion emission.
  相似文献   

15.
The authors describe magnetic nanoparticles consisting of an Fe3O4 core and a poly(methacrylic acid) coating for dispersive solid phase extraction (DSPE) of arsenic prior to its determination by hydride-generation microwave plasma AES (HG-MP-AES). The particles have an average size of 25 nm, can be prepared at low costs, and provide improved operational safety in combination with plasma generation. The methods allows arsenic to be determined with detection limits (at 3σ/m) of 3.0 ng?L?1 for As(III) and of 10.0 ng?L?1 of As(V). Recoveries of (spiked) samples range from 99.0 to 102%. This is the first report on the use of HG-MP-AES for speciation and preconcentration of arsenic using DSPE. The method displays detection limits that come close to those of ICP-OES and ICP-MS.
Graphical abstract A core/shell Fe3O4@poly(methacrylic acid) coated sorbent was synthesised and employed to the speciation of arsenic prior to its determination by hydride-generation microwave plasma atomic emission spectrometry.
  相似文献   

16.
The authors describe a 3-component nanoparticle system composed of a silica-coated magnetite (Fe3O4) core and a layered double (Cu-Cr) hydroxide nanoplatelet shell. The sorbent has a high anion exchange capacity for extraction anionic species. A simple online system, referred to as "on-line packed magnetic-in-tube solid phase microextraction" was designed. The nanoparticles were placed in a stainless steel cartridge via dry packing. The cartridge was then applied to the preconcentration acidic drugs including naproxen and indomethacin from urine and plasma. Extraction and desorption times, pH values of the sample solution and flow rates of sample solution and eluent were optimized. Analytes were then quantified by HPLC with UV detection. Under optimal conditions, the limits of detection range from 70 to 800 ng L?1, with linear responses from 0.1–500 μg L?1 (water samples), 0.6–500 μg L?1 (spiked urine), and 0.9–500 μg L?1 (spiked plasma). The inter- and intra-assay precisions (RSDs, for n?=?5) are in the range of 2.2–5.4%, 2.8–4.9%, and 2.0–5.2% at concentration levels of 5, 25 and 50 μg L?1, respectively. The method was applied to the analysis of the drugs in spiked human urine and plasma, and good results were achieved.
Graphical abstract Fe3O4@SiO2@CuCr-LDH magnetic nanoparticles were synthesized and packed in to a stainless steel column. The column was applied to solid phase microextraction of acidic drugs from biological samples.
  相似文献   

17.
A nanocomposite consisting of cetyltrimethylammonium bromide (CTAB), Fe3O4 nanoparticles and reduced graphene oxide (CTAB-Fe3O4-rGO) was prepared, characterized, and used to modify the surface of a glassy carbon electrode (GCE). The voltammetric response of the modified GCE to 4-nonylphenol (NPh) was investigated by cyclic voltammetry and revealed a strong peak at around 0.57 V (vs. SCE). Under optimum conditions, the calibration plot is linear in the ranges from 0.03 to 7.0 μM and from 7.0 to 15.0 μM, with a 8 nM detection limit which is lower that that of many other methods. The modified electrode has excellent fabrication reproducibility and was applied to the determination of NPh in spiked real water samples to give recoveries (at a spiking level of 1 μM) between 102.1 and 99.1%.
Graphical abstract A nanocomposite consisting of cetyltrimethylammonium bromide (CTAB), Fe3O4 nanoparticles and reduced graphene oxide (CTAB-Fe3O4-rGO) was prepared and used to modify the surface of a glassy carbon electrode (GCE) for the differential pulse voltammetric (DPV) determination of 4-nonylphenol (NPh).
  相似文献   

18.
A magnetic nanosorbent was prepared from Fe3O4 nanoparticles and polyacrylamide using a solvothermal process. Two functions are achieved simultaneously in this process: The first consists in the formation of a carbon layer around the Fe3O4 nanoparticles, and the second one in the functionalization with an amido group. This combination allows the protection of Fe3O4 nanoparticles from dissolution in acid medium during heavy metal adsorption. The adsorbent was characterized by SEM, TEM, EDS, FTIR, TGA, and in terms of surface area. Results showed the Fe3O4 nanoparticles to be embedded in a sheet of carbon with folded surfaces which is functionalized with amido groups. The nanosorbent was applied to the enrichment of Cr(III), Co(II), Cd(II), Zn(II) and Pb(II) via magnetic solid phase extraction (mag-SPE). The effects of pH value, eluent type and sample volume were optimized. The validation of the procedure was verified by the analysis of a wheat gluten certified reference material (8418). The limits of detection for the above ions range from 1 to 110 ng L?1. The relative standard deviations are <10%. The procedure was successfully applied to the enrichment of Cr(III), Co(II), Cd(II), Zn(II) and Pb(II) from various water and food samples.
Graphical abstract Schematic of a new magnetic nanosorbent synthesized from Fe3O4 nanoparticles and polyacrylamide using a solvothermal method. The sorbent was used for the enrichment of Cr(III), Co(II), Cd(II), Zn(II) and Pb(II) in water and food samples for their ICP-MS detection.
  相似文献   

19.
A rapid and sensitive aptamer-based assay is described for kanamycin, a veterinary antibiotic with neurotoxic side effects. It is based on a novel FRET pair consisting of fluorescent carbon dots and layered MoS2. This donor-acceptor pair (operated at excitation/emission wavelengths of 380/440 nm) shows fluorescence recovery efficiencies reaching 93 %. By taking advantages of aptamer-induced fluorescence quenching and recovery, kanamycin can be quantified in the of 4–25 μM concentration range, with a detection limit of 1.1 μM. The method displays good specificity and was applied to the determination of kanamycin in spiked milk where it gave recoveries ranging from 85 % to 102 %, demonstrating that the method serves as a promising tool for the rapid detection of kanamycin in milk and other animal-derived foodstuff.
Graphical Abstract A fluorometric aptasensor was developed for the determination of kanamycin. It is based on a novel FRET pair of carbon dots and layered MoS2. The fluorescence recovery efficiency reached 93 % with a good sensitivity, specificity and recoveries in spiked milk.
  相似文献   

20.
We report on a widely applicable approach for protein detection by using triple-helix DNA mediated CuInS2 quantum dot (QD) and graphene oxide (GO) nanocomposite. The CuInS2 QDs were coated with mercaptopropionic acid and then covalently linked to a hairpin aptamer against lysozyme (HLA). Single-stranded DNA (triple helix-forming oligonucleotide; THFO) readily absorbs on the surface of GO via π-stacking interaction, and this results in the formation of THFO-GO. If HLA-CuInS2 QDs are added to the THFO-GO system, the fluorescence of HLA-CuInS2 QDs (at excitation/emission wavelengths of 590/665 nm) is quenched. Lysozyme has a higher affinity for HLA than THFO. Therefore, in the presence of lysozyme, it will bind to the HLA-CuInS2 QD and displace the THFO-GO. This results in the restoration of fluorescence that is related to the concentration of lysozyme. The fluorescence of the QDs is turned on. The calibration plot is linear in the 0.01 to 1.8 ng·mL ̄1 concentration range, with a 3 pg·mL ̄1 detection limit (at a signal-to-noise ratio of 3). The method was also applied to study the inhibition of lysozyme by Ivy Ec . In our perception, this method has a wide scope in that it may become applicable to any protein for which an appropriate aptamer is available.
Graphical abstract A novel convenient and universal fluorescence nanoprobe for sensitive and selective detection of lysozyme and inhibitor screening was established using triple-helix DNA mediated CuInS2 QDs and GO nanocomposites
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号