首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One major goal in materials chemistry is to find inexpensive compounds with improved capabilities. Stable inorganic electrides, derived from nanoporous mayenite [Ca12Al14O32]O, are a new family that has very interesting properties such as electronic conductivity combined with transparency. However, an intriguing fundamental problem is to understand the structures of these cubic materials and to characterize their free-electron loadings. Here we report an accurate structural study for three members of the series [Ca12Al14O32]O(1-delta)e(2delta) (delta = 0, 0.15, and 0.45), from single-crystal low-temperature synchrotron X-ray diffraction. The complex structural disorder imposed by the presence of the oxide anions into the mayenite cages has been unravelled. Furthermore, the final electron density map for delta = 0.45 black mayenite has shown electron density localized into the center of the cages, which is the first experimental proof of their electride nature. The reported structural findings challenge theorists to improve predictive models in this new family of materials.  相似文献   

2.
Electrides are ionic compounds in which electrons act as anions. These compounds are expected to have interesting properties arising from their exotic structure. The fatal drawbacks of the thermal and chemical instability of organic electrides were resolved by the synthesis of a room temperature (RT) stable electride using single crystalline 12CaO.7Al2O3 (C12A7) with a nanoporous structure and the chemical treatments for a long duration. However, an innovative fabrication method is obviously required for practical applications such as cold electron-emitter and thermionic devices. Herein we report a simple synthesis for polycrystalline C12A7 electrides with a moderate electronic conductivity via a strongly reducing C12A7 "melt", i.e., direct solidification of the melt or crystallization of the transparent glass. Generation of carrier electrons and precipitation of the C12A7 phase from the strongly reducing melt and glass are likely associated with the incorporation of carbon-related anions for stabilizing the C12A7 phase and keeping the mobile electrons in C12A7. These findings will be broadly utilized for applications by mass production in a desired shape and dimension, facilitating the research of electrides.  相似文献   

3.
Ce4     
The yellow-orange oxonitridosilicate oxide Ce4[Si4O4N6]O was obtained by the reaction of cerium metal with Si(NH)2 and SiO2 in a radiofrequency furnace at 1560 degrees C. The crystal structure was determined by single-crystal X-ray diffraction (a = 1033.67(6) pm, P2,3, Z = 4, R1 = 0.0412, wR2 = 0.0678) and powder neutron diffraction. In the solid there are complex cations [Ce4O]10+ that are enveloped by a hyperbolical layer structure [Si4O4N6]10-. The layer is built up by corner-sharing SiON3 tetrahedra of Q3 type. The oxygen atoms of the SiON3 tetrahedra are terminally bound to Si, while all nitrogen atoms bridge two neighboring Si centres. The crystallographic differentiation of O and N was unequivocally possible by a careful evaluation of the single-crystal X-ray diffraction data combined with lattice-energy calculations by using the MAPLE concept (Madelung part of lattice energy). Furthermore the results were confirmed by the chemical analyses. Subsequently, the determined N/O distribution and their crystallographic ordering was proved by neutron powder diffraction. In accordance with the molar ratio Si:(O,N) = 2:5 the [Si4O4N6]10- network may be classified as a layer silicate. In this specific case a hyperbolically corrugated topology of the layers is observed; this is correlated to periodic nodal surface (PNS) representatives.  相似文献   

4.
Two new oxides have been unambiguously identified as Bi2Tc2O7-delta with delta = 0.14(1) and Bi3TcO8 through X-ray absorption near-edge structure spectroscopy and neutron powder diffraction. The compound Bi2Tc2O7-delta has a cubic pyrochlore-type structure with a = 10.4746(1) A, space group Fd3m (origin choice 2), and Z = 8. The compound Bi3TcO8 is also cubic, a = 11.5749(1) A, space group P2(1)3, Z = 8, and has a fluorite-related crystal structure. In Bi2Tc2O7-delta the Tc(IV) cations are octahedrally coordinated, whereas in Bi3TcO8 the Tc(VII) cations are tetrahedrally coordinated. A third new phase, probably Bi3Tc3O11, could not be obtained pure, but preliminary X-ray powder diffraction data affords a primitive cubic lattice with a = 9.3433(1) A. On the basis of structural similarities between Bi2Tc2O7-delta and closely related oxides, Bi2Tc2O7-delta is expected to be a metallic oxide with Pauli paramagnetism. Electronic structure calculations of both Bi2Tc2O7-delta and Bi3TcO8 further support metallic conductivity in the former and insulating behavior in the latter. The inert pair effect of the Bi cations on the crystal structures of Bi2Tc2O7-delta and Bi3TcO8 is also described. In addition, calculations of the valence electron localization function for Bi2Tc2O7-delta and Bi3TcO8 provide further visualization of the Bi 6s(2) lone pair electrons in the real space of the crystal structures.  相似文献   

5.
利用溶胶-凝胶法制备了多孔晶体材料C12A7-Cl- (Ca12Al14O32Cl2), 制备凝胶的原料是四水合硝酸钙、九水合硝酸铝、氯化钙、尿素和乙二醇. 混合溶液经过搅拌2-3 h形成溶胶, 再经350 ℃热处理后形成凝胶体, 最终在流动氩气气氛中1000 ℃烧结后得到材料. 用X射线衍射, 场发射扫描电子显微镜, 热重分析, 电子顺磁共振和离子色谱等方法表征合成的C12A7-Cl-多孔晶体材料. 结果表明, 利用溶胶-凝胶法成功地生成了C12A7 结构, 氯负离子是材料中存储的主要负离子. 此外, 从C12A7-Cl-晶体材料表面发射的氯负离子也被飞行时间质谱观测到. 上述结果说明溶胶-凝胶法可被用于制备C12A7-Cl-晶体材料.  相似文献   

6.
Room temperature-stable inorganic electride [Ca(24)Al(28)O(68)](4+)4e(-) was employed for a pinacol coupling reaction in aqueous media. Ca-Al-O gel formed by the destruction of the crystal structure of an electride by water media played a key role in transferring the electron to electrophilic aldehydes. Aromatic aldehydes reacted smoothly with moderate to high yields.  相似文献   

7.
An integrated suite of synthesis and characterisation techniques that includes synchrotron-based single crystal, powder X-ray diffraction, nuclear magnetic resonance and electron diffraction have been employed to uncover two new distinct structures in the Ca(x)Ba(2-x)P(2)O(7) polymorphic phosphate system. These materials have particular relevance for their application as both biomaterials and phosphors. Calcium barium pyrophosphate, CaBaP(2)O(7), was shown by a combination of spectroscopic and diffraction techniques to have two polymorphs distinct in structure from all of the five previously reported polymorphs of Ca, Sr and Ba pyrophosphate. A high temperature polymorph HT-CaBaP(2)O(7) prepared at 1200 °C is orthorhombic, of space group P(212121) with a = 13.0494 ?, b = 8.9677 ?, c = 5.5444 ?. A low temperature polymorph LT-CaBaP(2)O(7), prepared below 1000 °C, is monoclinic with space group P2(1)/c and dimensions a = 12.065 ?, b = 10.582 ?, c = 9.515 ?, β = 94.609°.  相似文献   

8.
Owing to gold's oxophobicity, its oxide chemistry is rather limited, and elevated oxygen pressures are usually required to prepare ternary and quaternary oxide compounds with gold ions. The Au3+ oxide, La4LiAuO8, is remarkable both because it can be prepared at ambient pressure in air, and because of its unusual stability toward thermal decomposition and reduction. The structure of La4LiAuO8 was established by Pietzuch et al. using single crystal X-ray diffraction [1]. The compound adopts an ordered modification of the Nd2CuO4 structure, containing two-dimensional sheets in which AuO4 square planes are separated from one another by LiO4 square planes. In light of the meager X-ray scattering factors of Li and O, relative to La and Au, we report here a neutron powder diffraction study of La4LiAuO8, definitively confirming the structure. To our knowledge, this is the first reported neutron diffraction study of any stoichiometric oxide compound of gold. X-N maps, which make use of nuclear positions obtained from Rietveld refinement of time-of-flight neutron diffraction data and electron densities obtained from synchrotron X-ray powder diffraction data, point to the highly covalent nature of the Au-O bonding in La4LiAuO8. This is in good agreement with charge densities and Bader charges obtained from full density functional relaxation of the structure.  相似文献   

9.
Several new hydrated rare earth vanadates and rare earth oxy-vanadates have been synthesized using hydrothermal techniques and characterized using single crystal and powder X-ray diffraction and infrared and UV-vis absorption spectroscopies. The hydrated rare earth vanadates adopt the space group P2(1)/m with general formula A(3)VO(5)(OH)(3) (A = Y (1), Dy (2), or La (3)) and contain anionic distorted square pyramidal [VO(5)](-6) units and AO(7) and AO(8) polyhedra. The oxy-vanadates with the general formula A(2)O(VO(4)) (A = Y (4), Dy (5; 6), or Yb (7)) form two polymorphs in either P2(1)/c or C2/c space groups and contain anionic tetrahedral [VO(4)](-4) units and nonvanadium bonded O(2-) anions in distorted [OA(4)] tetrahedra. In all cases, the vanadium ion is in the tetravalent oxidation state, and its original source was the trace V(4+) impurities in YVO(4). The observed vanadyl and equatorial vanadium-oxygen bond lengths about the square pyramid in compounds 1-3 and the tetrahedral vanadium coordination found in compounds 4-7 are unusual for V(4+). The electronic and vibrational spectra are also reported and correlated with the appropriate coordination environment.  相似文献   

10.
The crystal structure of the layered cobalt oxyfluoride Sr(2)CoO(3)F synthesized under high-pressure and high-temperature conditions has been determined from neutron powder diffraction and synchrotron powder diffraction data collected at temperatures ranging from 320 to 3 K. This material adopts the tetragonal space group I4/mmm over the measured temperature range and the crystal structure is analogous to n = 1 Ruddlesden-Popper type layered perovskite. In contrast to related oxyhalide compounds, the present material exhibits the unique coordination environment around the Co metal center: coexistence of square pyramidal coordination around Co and anion disorder between O and F at the apical sites. Magnetic susceptibility and electrical resistivity measurements reveal that Sr(2)CoO(3)F is an antiferromagnetic insulator with the Néel temperature T(N) = 323(2) K. The magnetic structure that has been determined by neutron diffraction adopts a G-type antiferromagnetic order with the propagation vector k = (1/2 1/2 0) with an ordered cobalt moment μ = 3.18(5) μ(B) at 3 K, consistent with the high spin electron configuration for the Co(3+) ions. The antiferromagnetic and electrically insulating states remain robust even against 15%-O substation for F at the apical sites. However, applying pressure exhibits the onset of the metallic state, probably coming from change in the electronic state of square-pyramidal coordinated cobalt.  相似文献   

11.
12.
The crystal structures of several oxides of the La(2/3)Li(x)Ti(1-x)Al(x)O(3) system have been studied by selected-area electron diffraction, high-resolution transmission electron microscopy, and powder neutron diffraction, and their lithium conductivity has been by complex impedance spectroscopy. The compounds have a perovskite-related structure with a unit cell radical2 a(p)x2 a(p)x radical2 a(p) (a(p)=perovskite lattice parameter) due to the tilting of the (Ti/Al)O(6) octahedra and the ordering of lanthanum and lithium ions and vacancies along the 2 a(p) axis. The Li(+) ions present a distorted square-planar coordination and are located in interstitial positions of the structure, which could explain the very high ionic conductivity of this type of material. The lithium conductivity depends on the oxide composition and its crystal microstructure, which varies with the thermal treatment of the sample. The microstructure of these titanates is complex due to formation of domains of ordering and other defects such as strains and compositional fluctuations.  相似文献   

13.
Helps RM  Rees NH  Hayward MA 《Inorganic chemistry》2010,49(23):11062-11068
Reaction of the n = 2 Ruddlesden-Popper oxide Sr(3)Co(2)O(5.80) with CaH(2) yields an extended oxide-hydride phase: Sr(3)Co(2)O(4.33)H(0.84). Neutron powder diffraction data reveal the material adopts a body-centered orthorhombic structure (Immm: a = 3.7551(5) ?, b = 3.7048(4) ?, c = 21.480(3) ?) in which the hydride ions are accommodated within disordered CoO(1.16)H(0.46) layers. Low temperature neutron powder diffraction data show no evidence for long-range magnetic order, suggesting the chemical disorder in the anion lattice of the material leads to magnetic frustration.  相似文献   

14.
Adkin JJ  Hayward MA 《Inorganic chemistry》2008,47(23):10959-10964
The synthesis of the Mn(II) phase 4H-Ba(0.5)Sr(0.5)MnO(2+delta) via the topotactic reduction of 4H-Ba(0.5)Sr(0.5)MnO(3-x) with the novel reducing agent LiH, is described. Neutron powder diffraction data show that oxide ions are deintercalated from the host structure in a disordered manner to yield "tetrahedral" MnO(4) coordination sites. Magnetic susceptibility and neutron powder diffraction data show that the title phase adopts a canted antiferromagnetically ordered state below T(N) = 355K, consistent with the strong magnetic coupling expected between d(5) centers.  相似文献   

15.
The compounds [Mg{In(SC{O}Ph)4}2] (1) and [Ca(H2O)x{In(SC{O}Ph)4}2].yH2O (x = 0, y = 1, 2 major product; x = 1, y = 0, 2a minor product; x = 2, y = 2, 2b minor product) have been synthesized by reacting InCl3 and M(SC{O}Ph)2 (M = Mg and Ca) prepared in situ in the molar ratio 1:2. The structures of 1, 2a, and 2b have been determined by X-ray crystallography. The structure of 1 consists of two tetrahedral [In(SC{O}Ph)4]- anions sandwiching the Mg(II) metal ions through six carbonyl O atoms. The coordination geometry at the Mg(II) metal atom is distorted octahedral with an O(6) donor set. The structures of 2a and 2b consist of two [In(SC{O}Ph)4]- anions sandwiching the Ca(II) metal ion through five and four carbonyl O atoms, and the octahedral coordination at the Ca(II) centers is completed by one and two aqua ligands, respectively. Two aqua ligands and two lattice water molecules form a H-bonded water chain in the channel created by [Ca{In(SC{O}Ph)4}2] molecules in the crystal structure of 2b. The thermal decomposition of 1 and 2 indicated the formation of the corresponding MIn2S4 materials, and this was confirmed by X-ray powder diffraction patterns.  相似文献   

16.
New oxyfluorides Li(2x)Ca(1.5-x) square (0.5-x)M2O6F (M = Nb, Ta), belonging to the cubic pyrochlore structural type (Z = 8, a approximately 10.5 angstroms), were synthesized by solid state reaction for 0 < or = x < or = 0.5. XRD data allowed us to determine their structures from single crystals for the two alpha and beta-Ca(1.5) square (0.5)Nb2O6F forms and from powder samples for the others. This characterisation was completed by TEM and solid state 19F NMR experiments. For the Ca(1.5) square (0.5)M2O6F (x = 0) pyrochlore phases, the presence of a double ordering phenomenon is demonstrated, involving on one hand the Ca(2+) ions and the vacancies and on the other hand the oxide and the fluoride anions which are strictly located in the 8b sites of the Fd3m aristotype space group. The Ca(2+) ions/vacancies ordering leads to a reversible phase transition, a (P4(3)32) <--> beta (Fd3m). The 19F NMR study strongly suggests that, in the beta-phases, the fluoride ions are only on average at the centre of the Ca3 square tetrahedron. It shows that slightly different Ca-F distances occuring in alpha-Ca(1.5) square (0.5)Nb2O6F may be related to a more difficult thermal ionic and vacancies diffusion process than in the tantalate compound. This may explain the hysteresis phenomenon presented by the phase transition. A solid solution Li(2x)Ca(1.5-x) square (0.5-x) Ta2O6F (0 < or = x < or = 0.5) was prepared and the order-disorder phase transition observed for Ca(1.5) square (0.5)M2MO6F compounds disappears for all the other compositions where less or no more vacancies exist in the 16d sites. In the LiCaM2O6F compounds, the 19F NMR study allows us to determine the Ca(2+) and Li+ ions distributions around the fluoride ions and shows that the [FLi2Ca2] environment is clearly favoured.  相似文献   

17.
A homologous series of bis-diphenylphosphine oxides (C6H5)2PO(CH2)(n)PO(C6H5)2 (with n = 2-8; denoted 2-8] have been investigated to explore the effects of a range of competing and cooperative intermolecular and intramolecular interactions on the structural properties in the solid state. The important factors influencing the structural properties include intramolecular aspects such as the conformation of the aliphatic chain and the intramolecular interaction between the two P=O dipoles in the molecule, and intermolecular aspects such as long-range electrostatic interactions (dominated by the arrangement of the P=O dipoles), C-H...O interactions, C-H...pi interactions and pi...pi interactions. Compounds 3 and 5 could be crystallized only as solvate co-crystals (3 water and 5 x (toluene)2], whereas the crystal structures of all the other compounds contain only the bis-diphenylphosphine oxide molecule. The crystal structures have been determined from single-crystal X-ray diffraction data, with the exception of 7 (which has been determined here from powder X-ray diffraction data) and 4 (which was known previously). The compounds with even n represent a systematic structural series, exhibiting characteristic, essentially linear P=O...P=O...P=O dipolar arrays, together with C-H...O and C-H...pi interactions. For the compounds with odd n, on the other hand, uniform structural behaviour is not observed across the series, although certain aspects of these crystal structures contribute in a general sense to our understanding of the structural properties of bis-diphenylphosphine oxides. Importantly, for the compounds with odd n, there is "frustration" with regard to the molecular conformation, as the preferred all-anti conformation of the aliphatic chain gives rise to an unfavourable parallel alignment of the two P=O dipoles within the molecule. Clearly the importance of avoiding a parallel alignment of the P=O dipoles becomes greater as n decreases. Local structural aspects (investigated by high-resolution solid-state 31P NMR spectroscopy) and thermal properties of the bis-diphenylphosphine oxide materials are also reported.  相似文献   

18.
The novel oxide defect fluorite phase ScTiO(3.5) is formed during the topotactic oxidation of ScTiO(3) bixbyite. We report the oxidation pathway of ScTiO(3) and structure evolution of ScTiO(3.5), Sc(4)Ti(3)O(12), and related scandium-deficient phases as well as high-temperature phase transitions between room temperature and 1300 °Cusing in-situ X-ray diffraction. We provide the first detailed powder neutron diffraction study for ScTiO(3). ScTiO(3) crystallizes in the cubic bixbyite structure in space group Ia3 (206) with a = 9.7099(4) ?. The topotactic oxidation product ScTiO(3.5) crystallizes in an oxide defect fluorite structure in space group Fm3m (225) with a = 4.89199(5) ?. Thermogravimetric and differential thermal analysis experiments combined with in-situ X-ray powder diffraction studies illustrate a complex sequence of a topotactic oxidation pathway, phase segregation, and ion ordering at high temperatures. The optimized bulk synthesis for phase pure ScTiO(3.5) is presented. In contrast to the vanadium-based defect fluorite phases AVO(3.5+x) (A = Sc, In) the novel titanium analogue ScTiO(3.5) is stable over a wide temperature range. Above 950 °C ScTiO(3.5) undergoes decomposition with the final products being Sc(4)Ti(3)O(12) and TiO(2). Simultaneous Rietveld refinements against powder X-ray and neutron diffraction data showed that Sc(4)Ti(3)O(12) also exists in the defect fluorite structure in space group Fm3m (225) with a = 4.90077(4) ?. Sc(4)Ti(3)O(12) undergoes partial reduction in CO/Ar atmosphere to form Sc(4)Ti(3)O(11.69(2)).  相似文献   

19.
Preparation, characterization by X-ray diffraction, IR absorption, DTA-GTA analysis and ab-initio crystal structure determination are reported for a new lithium cyclohexaphosphate hydrate Li6P6O18·3H2O. It crystallizes in a trigonal (rhomboedral) cell (space group R 3¯m No 166, Z = 6) with a = 15.7442(2) Å, c = 12.5486(2) Å. X-ray powder diffraction pattern data was refined by Rietveld profile technique and lead to RBragg = 0.09. The crystal structure of Li6P6O18·3H2O is built up from [P6O18]6- ring anions, having the 3m symmetry, alternating along the 3¯ axis with rings made of six LiO4 tetrahedra and six LiO5 pseudo square pyramids sharing common edges.  相似文献   

20.
The effects of reaction temperature and pO2 were investigated on a series of (Ba,Ca,Nd)FeO3-delta perovskite systems in order to isolate phases containing ordered arrangements of the distinct vacancy and cation ordering patterns identified in less compositionally complex iron oxide systems. Initial synthesis in air at high temperature yields cubic perovskite phases (I) with average iron oxidation states higher than 3; selected area electron diffraction together with diffuse features observed in the synchrotron X-ray diffraction (SXRD) patterns of these materials show evidence of small domains of short-range cation and vacancy order. Annealing these materials in nitrogen or in a sealed tube in the presence of an NiO/Ni buffer yielded the Fe(3+) phase Ca2Ba2Nd2Fe6O16 (II), closely related to Sr2LaFe3O8 but with partial cation order as well as anion order present the larger Ba cations are largely present in the 12-coordinate site between the octahedral iron layers, and Ca is largely present in 10-coordinate sites between octahedral and tetrahedral sites. Further reduction of Ca2Ba2Nd2Fe6O16 using a Zr getter yields the mixed-valence phase Ca2Ba2Nd2Fe6O15.6 (III). The structure of III was solved by maximum entropy analysis of XRD data coupled with analysis of high-temperature neutron diffraction data and refined against combined SXRD and high-Q ambient-temperature neutron data. This material crystallizes in a 20-fold perovskite super cell (Imma, a approximately square root(2 x a(p), b approximately 10 x a(p), c approximately square root(x 2a(p)) and can be visualized as an intergrowth between brownmillerite (Ca2Fe2O5) and the YBa2Fe3O8 structure. There are three distinct iron coordination environments, octahedral (O), square-pyramidal (Sp), and trigonal planar (Tp, formed by distorting the tetrahedral site in brownmillerite), which form a Sp-O-Tp-O-Sp repeat. Bond valence calculations indicate that Tp is an Fe(2+) site, while the O and Sp sites are Fe(3+). The A-site cations are also partially ordered over three distinct sites: 8-coordinate between the Sp layers, 10-coordinate between Tp and O layers, and 12-coordinate between Sp and O layers. Mossbauer spectroscopy, magnetometry, and variable-temperature neutron diffraction show that the material undergoes two magnetic transitions at approximately 700 and 255 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号