首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The addition of low-passed (LP) speech or even a tone following the fundamental frequency (F0) of speech has been shown to benefit speech recognition for cochlear implant (CI) users with residual acoustic hearing. The mechanisms underlying this benefit are still unclear. In this study, eight bimodal subjects (CI users with acoustic hearing in the non-implanted ear) and eight simulated bimodal subjects (using vocoded and LP speech) were tested on vowel and consonant recognition to determine the relative contributions of acoustic and phonetic cues, including F0, to the bimodal benefit. Several listening conditions were tested (CI/Vocoder, LP, T(F0-env), CI/Vocoder + LP, CI/Vocoder + T(F0-env)). Compared with CI/Vocoder performance, LP significantly enhanced both consonant and vowel perception, whereas a tone following the F0 contour of target speech and modulated with an amplitude envelope of the maximum frequency of the F0 contour (T(F0-env)) enhanced only consonant perception. Information transfer analysis revealed a dual mechanism in the bimodal benefit: The tone representing F0 provided voicing and manner information, whereas LP provided additional manner, place, and vowel formant information. The data in actual bimodal subjects also showed that the degree of the bimodal benefit depended on the cutoff and slope of residual acoustic hearing.  相似文献   

2.
Vowel and consonant confusion matrices were collected in the hearing alone (H), lipreading alone (L), and hearing plus lipreading (HL) conditions for 28 patients participating in the clinical trial of the multiple-channel cochlear implant. All patients were profound-to-totally deaf and "hearing" refers to the presentation of auditory information via the implant. The average scores were 49% for vowels and 37% for consonants in the H condition and the HL scores were significantly higher than the L scores. Information transmission and multidimensional scaling analyses showed that different speech features were conveyed at different levels in the H and L conditions. In the HL condition, the visual and auditory signals provided independent information sources for each feature. For vowels, the auditory signal was the major source of duration information, while the visual signal was the major source of first and second formant frequency information. The implant provided information about the amplitude envelope of the speech and the estimated frequency of the main spectral peak between 800 and 4000 Hz, which was useful for consonant recognition. A speech processor that coded the estimated frequency and amplitude of an additional peak between 300 and 1000 Hz was shown to increase the vowel and consonant recognition in the H condition by improving the transmission of first formant and voicing information.  相似文献   

3.
The phonetic identification ability of an individual (SS) who exhibits the best, or equal to the best, speech understanding of patients using the Symbion four-channel cochlear implant is described. It has been found that SS: (1) can use aspects of signal duration to form categories that are isomorphic with the phonetic categories established by listeners with normal auditory function; (2) can combine temporal and spectral cues in a normal fashion to form categories; (3) can use aspects of fricative noises to form categories that correspond to normal phonetic categories; (4) uses information from both F1 and higher formants in vowel identification; and (5) appears to identify stop consonant place of articulation on the basis of information provided by the center frequency of the burst and by the abruptness of frequency change following signal onset. SS has difficulty identifying stop consonants from the information provided by formant transitions and cannot differentially identify signals that have identical F1's and relatively low-frequency F2's. SS's performance suggests that simple speech processing strategies (filtering of the signal into four bands) and monopolar electrode design are viable options in the design of cochlear prostheses.  相似文献   

4.
This study presents various acoustic measures used to examine the sequence /a # C/, where "#" represents different prosodic boundaries in French. The 6 consonants studied are /b d g f s S/ (3 stops and 3 fricatives). The prosodic units investigated are the utterance, the intonational phrase, the accentual phrase, and the word. It is found that vowel target values, formant transitions into the stop consonant, and the rate of change in spectral tilt into the fricative, are affected by the strength of the prosodic boundary. F1 becomes higher for /a/ the stronger the prosodic boundary, with the exception of one speaker's utterance data, which show the effects of articulatory declension at the utterance level. Various effects of the stop consonant context are observed, the most notable being a tendency for the vowel /a/ to be displaced in the direction of the F2 consonant "locus" for /d/ (the F2 consonant values for which remain relatively stable across prosodic boundaries) and for /g/ (the F2 consonant values for which are displaced in the direction of the velar locus in weaker prosodic boundaries, together with those of the vowel). Velocity of formant transition may be affected by prosodic boundary (with greater velocity at weaker boundaries), though results are not consistent across speakers. There is also a tendency for the rate of change in spectral tilt moving from the vowel to the fricative to be affected by the presence of a prosodic boundary, with a greater rate of change at the weaker prosodic boundaries. It is suggested that spectral cues, in addition to duration, amplitude, and F0 cues, may alert listeners to the presence of a prosodic boundary.  相似文献   

5.
Tone recognition is important for speech understanding in tonal languages such as Mandarin Chinese. Cochlear implant patients are able to perceive some tonal information by using temporal cues such as periodicity-related amplitude fluctuations and similarities between the fundamental frequency (F0) contour and the amplitude envelope. The present study investigates whether modifying the amplitude envelope to better resemble the F0 contour can further improve tone recognition in multichannel cochlear implants. Chinese tone and vowel recognition were measured for six native Chinese normal-hearing subjects listening to a simulation of a four-channel cochlear implant speech processor with and without amplitude envelope enhancement. Two algorithms were proposed to modify the amplitude envelope to more closely resemble the F0 contour. In the first algorithm, the amplitude envelope as well as the modulation depth of periodicity fluctuations was adjusted for each spectral channel. In the second algorithm, the overall amplitude envelope was adjusted before multichannel speech processing, thus reducing any local distortions to the speech spectral envelope. The results showed that both algorithms significantly improved Chinese tone recognition. By adjusting the overall amplitude envelope to match the F0 contour before multichannel processing, vowel recognition was better preserved and less speech-processing computation was required. The results suggest that modifying the amplitude envelope to more closely resemble the F0 contour may be a useful approach toward improving Chinese-speaking cochlear implant patients' tone recognition.  相似文献   

6.
7.
Two experiments investigating the effects of auditory stimulation delivered via a Nucleus multichannel cochlear implant upon vowel production in adventitiously deafened adult speakers are reported. The first experiment contrasts vowel formant frequencies produced without auditory stimulation (implant processor OFF) to those produced with auditory stimulation (processor ON). Significant shifts in second formant frequencies were observed for intermediate vowels produced without auditory stimulation; however, no significant shifts were observed for the point vowels. Higher first formant frequencies occurred in five of eight vowels when the processor was turned ON versus OFF. A second experiment contrasted productions of the word "head" produced with a FULL map, OFF condition, and a SINGLE channel condition that restricted the amount of auditory information received by the subjects. This experiment revealed significant shifts in second formant frequencies between FULL map utterances and the other conditions. No significant differences in second formant frequencies were observed between SINGLE channel and OFF conditions. These data suggest auditory feedback information may be used to adjust the articulation of some speech sounds.  相似文献   

8.
The role of auditory feedback in speech motor control was explored in three related experiments. Experiment 1 investigated auditory sensorimotor adaptation: the process by which speakers alter their speech production to compensate for perturbations of auditory feedback. When the first formant frequency (F1) was shifted in the feedback heard by subjects as they produced vowels in consonant-vowel-consonant (CVC) words, the subjects' vowels demonstrated compensatory formant shifts that were maintained when auditory feedback was subsequently masked by noise-evidence of adaptation. Experiment 2 investigated auditory discrimination of synthetic vowel stimuli differing in F1 frequency, using the same subjects. Those with more acute F1 discrimination had compensated more to F1 perturbation. Experiment 3 consisted of simulations with the directions into velocities of articulators model of speech motor planning, which showed that the model can account for key aspects of compensation. In the model, movement goals for vowels are regions in auditory space; perturbation of auditory feedback invokes auditory feedback control mechanisms that correct for the perturbation, which in turn causes updating of feedforward commands to incorporate these corrections. The relation between speaker acuity and amount of compensation to auditory perturbation is mediated by the size of speakers' auditory goal regions, with more acute speakers having smaller goal regions.  相似文献   

9.
The speech perception of two multiple-channel cochlear implant patients was compared with that of three normally hearing listeners using an acoustic model of the implant for 22 different speech tests. The tests used included a minimal auditory capabilities battery, both closed-set and open-set word and sentence tests, speech tracking and a 12-consonant confusion study using nonsense syllables. The acoustic model represented electrical current pulses by bursts of noise and the effects of different electrodes were represented by using bandpass filters with different center frequencies. All subjects used a speech processor that coded the fundamental voicing frequency of speech as a pulse rate and the second formant frequency of speech as the electrode position in the cochlea, or the center frequency of the bandpass filter. Very good agreement was found for the two groups of subjects, indicating that the acoustic model is a useful tool for the development and evaluation of alternative cochlear implant speech processing strategies.  相似文献   

10.
Changes in the speech spectrum of vowels and consonants before and after tonsillectomy were investigated to find out the impact of the operation on speech quality. Speech recordings obtained from patients were analyzed using the Kay Elemetrics, Multi-Dimensional Voice Processing (MDVP Advanced) software. Examination of the time-course changes after the operation revealed that certain speech parameters changed. These changes were mainly F3 (formant center frequency) and B3 (formant bandwidth) for the vowel /o/ and a slight decrease in B1 and B2 for the vowel /a/. The noise-to-harmonic ratio (NHR) also decreased slightly, suggesting less nasalized vowels. It was also observed that the fricative, glottal consonant /h/ has been affected. The larger the tonsil had been, the more changes were seen in the speech spectrum. The changes in the speech characteristics (except F3 and B3 for the vowel /o/) tended to recover, suggesting an involvement of auditory feedback and/or replacement of a new soft tissue with the tonsils. Although the changes were minimal and, therefore, have little effect on the extracted acoustic parameters, they cannot be disregarded for those relying on their voice for professional reasons, that is, singers, professional speakers, and so forth.  相似文献   

11.
Synthesis (carrier) signals in acoustic models embody assumptions about perception of auditory electric stimulation. This study compared speech intelligibility of consonants and vowels processed through a set of nine acoustic models that used Spectral Peak (SPEAK) and Advanced Combination Encoder (ACE)-like speech processing, using synthesis signals which were representative of signals used previously in acoustic models as well as two new ones. Performance of the synthesis signals was determined in terms of correspondence with cochlear implant (CI) listener results for 12 attributes of phoneme perception (consonant and vowel recognition; F1, F2, and duration information transmission for vowels; voicing, manner, place of articulation, affrication, burst, nasality, and amplitude envelope information transmission for consonants) using four measures of performance. Modulated synthesis signals produced the best correspondence with CI consonant intelligibility, while sinusoids, narrow noise bands, and varying noise bands produced the best correspondence with CI vowel intelligibility. The signals that performed best overall (in terms of correspondence with both vowel and consonant attributes) were modulated and unmodulated noise bands of varying bandwidth that corresponded to a linearly varying excitation width of 0.4 mm at the apical to 8 mm at the basal channels.  相似文献   

12.

Background  

The cortical activity underlying the perception of vowel identity has typically been addressed by manipulating the first and second formant frequency (F1 & F2) of the speech stimuli. These two values, originating from articulation, are already sufficient for the phonetic characterization of vowel category. In the present study, we investigated how the spectral cues caused by articulation are reflected in cortical speech processing when combined with phonation, the other major part of speech production manifested as the fundamental frequency (F0) and its harmonic integer multiples. To study the combined effects of articulation and phonation we presented vowels with either high (/a/) or low (/u/) formant frequencies which were driven by three different types of excitation: a natural periodic pulseform reflecting the vibration of the vocal folds, an aperiodic noise excitation, or a tonal waveform. The auditory N1m response was recorded with whole-head magnetoencephalography (MEG) from ten human subjects in order to resolve whether brain events reflecting articulation and phonation are specific to the left or right hemisphere of the human brain.  相似文献   

13.
The effect of speaking rate variations on second formant (F2) trajectories was investigated for a continuum of rates. F2 trajectories for the schwa preceding a voiced bilabial stop, and one of three target vocalic nuclei following the stop, were generated for utterances of the form "Put a bV here, where V was /i/,/ae/ or /oI/. Discrete spectral measures at the vowel-consonant and consonant-vowel interfaces, as well as vowel target values, were examined as potential parameters of rate variation; several different whole-trajectory analyses were also explored. Results suggested that a discrete measure at the vowel consonant (schwa-consonant) interface, the F2off value, was in many cases a good index of rate variation, provided the rates were not unusually slow (vowel durations less than 200 ms). The relationship of the spectral measure at the consonant-vowel interface, F2 onset, as well as that of the "target" for this vowel, was less clearly related to rate variation. Whole-trajectory analyses indicated that the rate effect cannot be captured by linear compressions and expansions of some prototype trajectory. Moreover, the effect of rate manipulation on formant trajectories interacts with speaker and vocalic nucleus type, making it difficult to specify general rules for these effects. However, there is evidence that a small number of speaker strategies may emerge from a careful qualitative and quantitative analysis of whole formant trajectories. Results are discussed in terms of models of speech production and a group of speech disorders that is usually associated with anomalies of speaking rate, and hence of formant frequency trajectories.  相似文献   

14.
Speech discrimination testing, using both open- and closed-set materials, was carried out with four severely to profoundly hearing impaired adults and seven normally hearing subjects to assess performance of a wearable eight-channel electrotactile aid (Tickle Talker). Significant increases in speechtracking rates were noted for all subjects when using the electrotactile aid. After 70 h of training, mean tracking rate in the tactile plus lipreading condition was 55 words per minute (wpm), as compared with 36 wpm for lipreading alone, for the normally hearing group. For the hearing impaired group, the mean tracking rate in the aided condition was 37 wpm, as compared with 24 wpm for lipreading alone, following 35 h of training. Performance scores on Central Institute for the Deaf (CID) everyday sentences, Consonant Nucleus Consonant (CNC) words, and closed-set vowel and consonant identification were significantly improved when using the electrotactile aid. Performance scores, using the aid without lipreading, were well above chance on consonant and vowel identification and on elements of the Minimal Auditory Capabilities Battery. Two hearing impaired subjects have used the device satisfactorily in the home environment.  相似文献   

15.
Although some cochlear implant (CI) listeners can show good word recognition accuracy, it is not clear how they perceive and use the various acoustic cues that contribute to phonetic perceptions. In this study, the use of acoustic cues was assessed for normal-hearing (NH) listeners in optimal and spectrally degraded conditions, and also for CI listeners. Two experiments tested the tense/lax vowel contrast (varying in formant structure, vowel-inherent spectral change, and vowel duration) and the word-final fricative voicing contrast (varying in F1 transition, vowel duration, consonant duration, and consonant voicing). Identification results were modeled using mixed-effects logistic regression. These experiments suggested that under spectrally-degraded conditions, NH listeners decrease their use of formant cues and increase their use of durational cues. Compared to NH listeners, CI listeners showed decreased use of spectral cues like formant structure and formant change and consonant voicing, and showed greater use of durational cues (especially for the fricative contrast). The results suggest that although NH and CI listeners may show similar accuracy on basic tests of word, phoneme or feature recognition, they may be using different perceptual strategies in the process.  相似文献   

16.
Previous work has demonstrated that normal-hearing individuals use fine-grained phonetic variation, such as formant movement and duration, when recognizing English vowels. The present study investigated whether these cues are used by adult postlingually deafened cochlear implant users, and normal-hearing individuals listening to noise-vocoder simulations of cochlear implant processing. In Experiment 1, subjects gave forced-choice identification judgments for recordings of vowels that were signal processed to remove formant movement and/or equate vowel duration. In Experiment 2, a goodness-optimization procedure was used to create perceptual vowel space maps (i.e., best exemplars within a vowel quadrilateral) that included F1, F2, formant movement, and duration. The results demonstrated that both cochlear implant users and normal-hearing individuals use formant movement and duration cues when recognizing English vowels. Moreover, both listener groups used these cues to the same extent, suggesting that postlingually deafened cochlear implant users have category representations for vowels that are similar to those of normal-hearing individuals.  相似文献   

17.
Formant dynamics in vowel nuclei contribute to vowel classification in English. This study examined listeners' ability to discriminate dynamic second formant transitions in synthetic high front vowels. Acoustic measurements were made from the nuclei (steady state and 20% and 80% of vowel duration) for the vowels /i, I, e, epsilon, ae/ spoken by a female in /bVd/ context. Three synthesis parameters were selected to yield twelve discrimination conditions: initial frequency value for F2 (2525, 2272, or 2068 Hz), slope direction (rising or falling), and duration (110 or 165 ms). F1 frequency was roved. In the standard stimuli, F0 and F1-F4 were steady state. In the comparison stimuli only F2 frequency varied linearly to reach a final frequency. Five listeners were tested under adaptive tracking to estimate the threshold for frequency extent, the minimal detectable difference in frequency between the initial and final F2 values, called deltaF extent. Analysis showed that initial F2 frequency and direction of movement for some F2 frequencies contributed to significant differences in deltaF extent. Results suggested that listeners attended to differences in the stimulus property of frequency extent (hertz), not formant slope (hertz/second). Formant extent thresholds were at least four times smaller than extents measured in the natural speech tokens, and 18 times smaller than for the diphthongized vowel /e/.  相似文献   

18.
The effect of diminished auditory feedback on monophthong and diphthong production was examined in postlingually deafened Australian-English speaking adults. The participants were 4 female and 3 male speakers with severe to profound hearing loss, who were compared to 11 age- and accent-matched normally hearing speakers. The test materials were 5 repetitions of hVd words containing 18 vowels. Acoustic measures that were studied included F1, F2, discrete cosine transform coefficients (DCTs), and vowel duration information. The durational analyses revealed increased total vowel durations with a maintenance of the tense/lax vowel distinctions in the deafened speakers. The deafened speakers preserved a differentiated vowel space, although there were some gender-specific differences seen. For example, there was a retraction of F2 in the front vowels for the female speakers that did not occur in the males. However, all deafened speakers showed a close correspondence between the monophthong and diphthong formant movements that did occur. Gaussian classification highlighted vowel confusions resulting from changes in the deafened vowel space. The results support the view that postlingually deafened speakers maintain reasonably good speech intelligibility, in part by employing production strategies designed to bolster auditory feedback.  相似文献   

19.
Auditory feedback influences human speech production, as demonstrated by studies using rapid pitch and loudness changes. Feedback has also been investigated using the gradual manipulation of formants in adaptation studies with whispered speech. In the work reported here, the first formant of steady-state isolated vowels was unexpectedly altered within trials for voiced speech. This was achieved using a real-time formant tracking and filtering system developed for this purpose. The first formant of vowel /epsilon/ was manipulated 100% toward either /ae/ or /I/, and participants responded by altering their production with average Fl compensation as large as 16.3% and 10.6% of the applied formant shift, respectively. Compensation was estimated to begin <460 ms after stimulus onset. The rapid formant compensations found here suggest that auditory feedback control is similar for both F0 and formants.  相似文献   

20.
Speech production parameters of three postlingually deafened adults who use cochlear implants were measured: after 24 h of auditory deprivation (which was achieved by turning the subject's speech processor off); after turning the speech processor back on; and after turning the speech processor off again. The measured parameters included vowel acoustics [F1, F2, F0, sound-pressure level (SPL), duration and H1-H2, the amplitude difference between the first two spectral harmonics, a correlate of breathiness] while reading word lists, and average airflow during the reading of passages. Changes in speech processor state (on-to-off or vice versa) were accompanied by numerous changes in speech production parameters. Many changes were in the direction of normalcy, and most were consistent with long-term speech production changes in the same subjects following activation of the processors of their cochlear implants [Perkell et al., J. Acoust. Soc. Am. 91, 2961-2978 (1992)]. Changes in mean airflow were always accompanied by H1-H2 (breathiness) changes in the same direction, probably due to underlying changes in laryngeal posture. Some parameters (different combinations of SPL, F0, H1-H2 and formants for different subjects) showed very rapid changes when turning the speech processor on or off. Parameter changes were faster and more pronounced, however, when the speech processor was turned on than when it was turned off. The picture that emerges from the present study is consistent with a dual role for auditory feedback in speech production: long-term calibration of articulatory parameters as well as feedback mechanisms with relatively short time constants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号