首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The emission of radiation by a uniformly accelerated charge is analyzed. According to the standard approach, a radiation is observed whenever there is a relative acceleration between the charge and the observer. Analyzing difficulties that arose in the standard approach, we propose that a radiation is created whenever a relative acceleration between the charge and its own electric field exists. The electric field induced by a charge accelerated by an external (nongravitational) force is not accelerated with the charge. Hence the electric field is curved in the instantaneous rest frame of the accelerated charge. This curvature gives rise to a stress force, and the work done to overcome the stress force is the source of the energy carried by the radiation. In this way, the energy balance paradox finds its solution.  相似文献   

2.
In this theory, both the advanced and retarded Liénard-Wiechert potentials are used to compute the fields of a charged point particle. The incoming radiation from the advanced fields balances the outgoing radiation of the retarded fields, and we assume that there are no radiation reaction terms in the equations of motion of the particles. We further assume that only retarded fields act on particles through the Lorentz force, and that advanced fields act on antiparticles. This is a theory that is symmetric under time reflection (reversal of the direction of motion plus charge conjugation).  相似文献   

3.
The appearance of the time derivative of the acceleration in the equation of motion (EOM) of an electric charge is studied. It is shown that when an electric charge is accelerated, a stress force exists in the curved electric field of the accelerated charge, and in the case of a constant linear acceleration, this force is proportional to the acceleration. This stress force acts as a reaction force which is responsible for the creation of the radiation (instead of the radiation reaction force that actually does not exist at low velocities). Thus the initial acceleration should be supplied as an initial condition for the solution of the EOM of an electric charge.  相似文献   

4.
We examine whether a charge supported statically in a gravitational field radiates, and find the answer to this question to be positive. Based on our earlier results we find that the important condition for the creation of radiation is the existence of a relative acceleration between the charge and its electric field, where such an acceleration causes the curving of the electric field and the creation of a stress force due to this curvature. This stress force is the reaction force, which creates the radiation. Later we find that this condition do exist for a charge supported statically in a gravitational field, where the electric field of the charge falls in the gravitational field, it curves, and the stress force raised in this curved field, creates electromagnetic radiation.  相似文献   

5.
The effective Lagrangian of a point charge is derived by eliminating the electromagnetic field within the framework of the classical closed time path formalism. The short distance singularity of the electromagnetic field is regulated by an UV cutoff. The Abraham–Lorentz force is recovered and its similarity to quantum anomalies is underlined. The full cutoff-dependent linearized equation of motion is obtained, no runaway trajectories are found but the effective dynamics shows acausality if the cutoff is beyond the classical charge radius. The strength of the radiation reaction force displays a pole in its cutoff-dependence in a manner reminiscent of the Landau-pole of perturbative QED. Similarity between the dynamical breakdown of the time reversal invariance and dynamical symmetry breaking is pointed out.  相似文献   

6.
The analysis of the EM radiation from a single charge shows that the radiated power depends on the retarded acceleration of the charge. Therefore for consistency, an accelerated charge, free from the influence of external forces, should gradually lose its acceleration, until its total energy is radiated. Calculations show that the self force of a charge, which compensates for its radiation, is proportional to the derivative of the acceleration. However, when using this self force in the equation of motion of the charge, one gets a diverging solution, for which the acceleration runs away to infinity. This means that there is an inconsistency in the solution of the single charge problem. However, in the construction of the conserved Maxwell charge density, there is implicitly an integral over the corresponding world line which corresponds to a collection of charged spacetime events. One may therefore consistently think of the “self force” as the force on a charge due to another charge at the retarded position. From this point of view, the energy is evidently conserved and the radiation process appears as an absorbing resistance to the feeding source. The purpose of this work is to learn about the behavior of single charges from the behavior of a real current, corresponding to the set of charges moving on a world line, and to study the analog of the self force of a charge associated with the radiation resistance of a continuum of charges.  相似文献   

7.
The role of the characteristic length that characterizes linear acceleration is studied, in order to find how does this length determine the characteristic wavelength of the radiation created by the accelerated charge. Unruh equation for the temperature observed by a detector accelerated relative to the vacuum is used to determine the wavelength distribution of the radiation emitted by a linearly accelerated charge, and it is found that this distribution is peaked close to the characteristic length that characterizes the linear acceleration, which is the radius of curvature of the curved electric field created by the acelerated charge. PACS numbers: 11.10; 41.60.m.  相似文献   

8.
Electronic many-body effects alone can be the driving force for an ultrafast migration of a positive charge created upon ionization of molecular systems. Here we show that this purely electronic phenomenon generates a characteristic IR radiation. The situation when the initial ionic wave packet is produced by a sudden removal of an electron is also studied. It is shown that in this case a much stronger UV emission is generated. This emission appears as an ultrafast response of the remaining electrons to the perturbation caused by the sudden ionization and as such is a universal phenomenon to be expected in every multielectron system.  相似文献   

9.
We describe a new nematic liquid-crystal colloid system which is characterized by both charge stabilization of the particles and an interaction force. We estimate the effective charge of the particles by electrophoretic measurements and find that in such systems the director anchoring energy W is very low and the particles have little director distortion around them. The interaction force is created by producing a radial distribution of the nematic order parameter around a locally isotropic region created by ir laser heating. We theoretically describe this as being due to the induced flexoelectric polarization, the quadrupolar symmetry of which provides the required long-range force acting on charged particles.  相似文献   

10.
11.
We predict and study the effect of parametric self-induced excitation of a molecule moving above the dielectric or conducting medium with periodic grating. In this case the radiation reaction force modulates the molecular transition frequency which results in a parametric instability of dipole oscillations even from the level of quantum or thermal fluctuations. The present mechanism of instability of electrically neutral molecules is different from that of the well-known Smith-Purcell and transition radiation in which a moving charge and its oscillating image create an oscillating dipole. We show that parametrically excited molecular bunches can produce an easily detectable coherent radiation flux of up to a microwatt.  相似文献   

12.
The classical relativistic equation of motion with radiation reaction is solved exactly when the motion is along the lines of force due to a constant electric field. For physically admissible solutions, there is no contribution due to the radiation reaction. The general motion without radiation reaction is not linear.  相似文献   

13.
The difficulty of the usual approach to deal with the radiation reaction is pointed out, and under the condition that the radiation force must be a function of the external force and is zero whenever the external force be zero, a new and straightforward approach to radiation reaction force and damping is proposed. Starting from the Larmor formula for the power radiated by an accelerated charged particle, written in terms of the applied force instead of the acceleration, an expression for the radiation force is established in general, and applied to the examples for the linear and circular motion of a charged particle. This expression is quadratic in the magnitude of the applied force, inversely proportional to the speed of the charged particle, and directed opposite to the velocity vector. This force approach may contribute to the solution of the very old problem of incorporating the radiation reaction to the motion of the charged particles, and future experiments may tell us whether or not this approach point is in the right direction.  相似文献   

14.
We have created photosensitive heterostructures n-Ox/p-CuIn3Se5 for the first time. The synthesis process is based on thermal reaction of the ternary compound with atmospheric oxygen. We have studied the voltage-current characteristics and the photoconversion quantum efficiency spectra of the indicated structures. We discuss charge transport mechanisms and photosensitivity of the created structures. We show that n-Ox/p-CuIn3Se5 heterostructures can be used in designing solar cells and photoanalyzers for linearly polarized radiation. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 73, No. 6, pp. 782–785, November–December, 2006.  相似文献   

15.
This paper combines a classical electrodynamic base, adaptive electrons, and reactive radiation reaction energy effects and obtaines atomic stability, the Schrödinger equation, and quantized radiation. Electrons are assigned intrinsic parameter values and modeled as dynamic distributions of charge and current densities, bound together in a soliton-like way, with a form that alters in response to local force fields: not as waves or rigid spheres. The result is a deterministic view of quantum theory. Its postulatory base is replaced with derived results. The statistical interpretation of the wave function is that of standard quantum mechanics. When combined with classical electrodynamics, the theory completely describes quantum radiation.  相似文献   

16.
It has been shown by Gupta and Padmanabhan that the radiation reaction force of the Abraham–Lorentz–Dirac equation can be obtained by a coordinate transformation from the inertial frame of an accelerating charged particle to that of the laboratory. We show that the problem may be formulated in a flat space of five dimensions, with five corresponding gauge fields in the framework of the classical version of a fully gauge covariant form of the Stueckelberg–Feynman–Schwinger covariant mechanics (the zero mode fields of the 0, 1, 2, 3 components correspond to the Maxwell fields). Without additional constraints, the particles and fields are not confined to their mass shells. We show that in the mass-shell limit, the generalized Lorentz force obtained by means of the retarded Green's functions for the five dimensional field equations provides the classical Abraham–Lorentz–Dirac radiation reaction terms (with renormalized mass and charge). We also obtain general coupled equations for the orbit and the off-shell dynamical mass during the evolution as well as an autonomous non-linear equation of third order for the off-shell mass. The theory does not admit radiation if the particle does not move off-shell. The structure of the equations implies that mass-shell deviation is bounded when the external field is removed.  相似文献   

17.
Generalizing the method proposed by Damour–Ruffini, we discuss Hawking radiation of a Reissner–Nordström–de Sitter (RNdS) black hole. Under the condition that total energy and charge are conserved, taking the reaction of the radiation of particles to the spacetime into consideration and considering the interrelation between the event horizon and cosmological horizon, we investigate radiation spectrum of RNdS spacetime by a new Tortoise coordinate transformation. This radiation spectrum is no longer a purely thermal spectrum. It is related to the changes in the Bekenstein–Hawking entropy corresponding the event horizon and cosmological horizon. The result satisfies the unitary principle.  相似文献   

18.
O. Oron  L. P. Horwitz   《Physics letters. A》2001,280(5-6):265-270
We show that the problem of radiation reaction may be formulated in a space of five dimensions, with five corresponding gauge fields in the framework of the classical version of a fully gauge covariant form of the Stueckelberg–Feynman–Schwinger covariant mechanics (the zero mode fields of the 0,1,2,3 components correspond to the Maxwell fields). The particles and fields are not confined to their mass shells. We show that in the mass-shell limit, the generalized Lorentz force obtained by means of the retarded Green's functions for the five-dimensional field equations provides the classical Abraham–Lorentz–Dirac radiation reaction terms (with renormalized mass and charge). We also obtain general coupled equations for the orbit and the off-shell dynamical mass during the evolution as well as an autonomous nonlinear equation of third order for the off-shell mass. The theory does not admit radiation if the particle does not move off-shell. The structure of the equations implies that the mass-shell deviation is bounded when the external field is removed.  相似文献   

19.
Polarization fields created in a dielectric cylinder by a moving charge are considered. They are subdivided into vortex and potential fields. Formulas for the stopping force are deduced.  相似文献   

20.
Gold on KBr, a prototypical system for studies of metal on insulator growth, is investigated by noncontact atomic force microscopy. It is shown that charge emitted during deposition results in the generation of surface defects via charge-induced desorption. Moreover, the defect and gold nanoparticle number densities follow a highly similar temperature dependence, suggesting that the gold growth is dominated by nucleation at the defects. The defects created at elevated temperatures are monolayer-deep rectangular pits, while those created at room temperature have an irregular structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号