首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structure of the environmentally friendly flame retardant melaminium polyphosphate (MPoly) (2,4,6-triamino-1,3,5-triazinium x PO(3))(n)was determined by a direct-space global optimization technique from X-ray powder diffraction data. Solid-state NMR was used to corroborate the proposed hydrogen-bonding model and to determine the average degree of polymerization (n > 100). An analysis of the crystal structure of MPoly reveals aspects of molecular geometry and packing that are characteristic for melamine-containing compounds and polyphosphate salts. A comparison of MPoly with the crystal structures of its precursors melaminium orthophosphate (MP) and melaminium dihydrogenpyrophosphate (MPy) provides insight in the mechanism of the endothermic dehydration processes that takes place in the reaction path MP --> MPy --> MPoly. Solid-state NMR characterization of various samples of the same batch showed inhomogeneities in the MPoly composition. Various quantities of orthophosphates were found, which cannot be assigned to be MP.  相似文献   

2.
A compound formulated as (C4H12N2)[Ge2(pmida)2(OH)2] x 4 H2O (where pmida(4-) = N-(phosphonomethyl)iminodiacetate and C4H12N2(2+) = piperazinedium cation), containing the anionic [Ge2(pmida)2(OH)2]2- complex, has been synthesised by the hydrothermal approach and its structure determined by single-crystal X-ray diffraction analysis. Several high-resolution solid-state magic-angle spinning (MAS) NMR techniques, in particular two-dimensional 1H-X(13C,31P) heteronuclear correlation (HETCOR) and 1H-1H homonuclear correlation (HOMCOR) experiments incorporating a frequency-switched Lee-Goldburg (FS-LG) decoupling scheme, have been employed for the first time in such a material. Using these tools in tandem affords an excellent general approach to study the structure of other inorganic-organic hybrids. We assigned the NMR resonances with the help of C...H and P...H internuclear distances obtained through systematic statistical analyses of the crystallographic data. The compound was further characterised by powder X-ray diffraction techniques, IR and Raman spectroscopy, and by elemental and thermal analyses (thermogravimetric analysis and differential scanning calorimetry).  相似文献   

3.
Synchrotron X-ray powder diffraction and solid-state (13)C NMR shift tensor data are combined to provide a unique path to structure in microcrystalline organic solids. Analysis is demonstrated on ambuic acid powder, a widely occurring natural product, to provide the complete crystal structure. The NMR data verify phase purity, specify one molecule per asymmetric unit, and provide an initial structural model including relative stereochemistry and molecular conformation. A refinement of X-ray data from the initial model establishes that ambuic acid crystallizes in the P2(1) space group with unit cell parameters a = 15.5047(7), b = 4.3904(2), and c = 14.1933(4) A and beta = 110.3134(3) degrees . This combined analysis yields structural improvements at two dihedral angles over prior NMR predictions with differences of 103 degrees and 37 degrees found. Only minor differences of +/-5.5 degrees , on average, are observed at all remaining dihedral angles. Predicted hydroxyl hydrogen-bonding orientations also fit NMR predictions within +/-6.9 degrees . This refinement corrects chemical shift assignments at two carbons and reduces the NMR error by approximately 16%. This work demonstrates that the combination of long-range order information from synchrotron powder diffraction data together with the accurate shorter range structure given by solid-state NMR measurements is a powerful tool for studying challenging organic solids.  相似文献   

4.
Cadmium and mercury acetates have been reacted with pyrazole (Hpz) and 3,5-dimethylpyrazole (Hdmpz), affording distinct mixed-ligand species, selectively prepared upon slightly modifying the reaction conditions. Two polymorphs of [{Cd(mu-ac)2(Hpz)2}n], as well as the [{Cd(mu-ac)2(Hdmpz)2}n] species (Hac = acetic acid), were obtained by solution chemistry, while the two-dimensional [{Cd3(mu3-ac)4(mu-pz)2(Hpz)2}n] and [{Cd(mu-ac)(mu-pz)}n] polymers were prepared upon controlled thermal treatment of one of the [{Cd(mu-ac)2(Hpz)2}n] forms. Two mercury derivatives, [{Hg3(mu-ac)3(mu-pz)3}n] and [{Hg(ac)(mu-dmpz)}n], were also prepared, the latter containing one-dimensional chains of Hg(II) ions bridged by C-mercuriated Hdmpz ligands. All their crystal structures (but one) were determined by powder diffraction methods using conventional X-ray laboratory equipment, supported by 13C CPMAS NMR measurements. The latter method helped in assigning a C-metalated nature to an amorphous material of [Hg(ac)(pz)] formula, obtained by employing EtOH as a solvent. A few other Hdmpz-containing cadmium acetates were also prepared, but their polyphasic nature, evidenced by diffraction methods, hampered their complete structural characterization.  相似文献   

5.
Kanzaki M  Xue X 《Inorganic chemistry》2012,51(11):6164-6172
Structural characterization of a new high-pressure AlPO(4) phase synthesized at 5 GPa and 1500 °C is reported. The phase is monoclinic (P2/a) with a = 8.7437(1) ?, b = 4.8584(1) ?, c = 10.8600(2) ?, β = 90.124(1)° (Z = 6). (31)P MAS NMR and two-dimensional (2D) (27)Al triple-quantum (3Q) MAS NMR revealed that it contains two tetrahedral P sites of 1:2 abundance ratio, and two tetrahedral Al sites with 1:2 ratio. 2D (31)P dipolar-recoupled double-quantum (DQ) MAS NMR and (27)Al → (31)P dipolar-based (through-space) and J coupling-based (through-bond) 3Q-heteronuclear correlation (HETCOR) experiments provided direct information on the linkages of these sites. The crystal structure was solved and refined from synchrotron powder X-ray diffraction data utilizing the information from NMR. The phase is isostructural to moganite, a rare SiO(2) polymorph, and its structure can be derived from the latter via an ordered replacement of tetrahedral Si sites by Al and P. The NMR parameters of the phase were also calculated by first-principles method, which are consistent with those observed. Contrary to the other moganite phases known to date (i.e., SiO(2) and PON), moganite-AlPO(4) has a higher-pressure stability field than the corresponding quartz phase. This is the first moganite-type phase found in the ABX(4) system.  相似文献   

6.
7.
The study of micro- or nanocrystalline proteins by magic-angle spinning (MAS) solid-state NMR (SSNMR) gives atomic-resolution insight into structure in cases when single crystals cannot be obtained for diffraction studies. Subtle differences in the local chemical environment around the protein, including the characteristics of the cosolvent and the buffer, determine whether a protein will form single crystals. The impact of these small changes in formulation is also evident in the SSNMR spectra; however, the changes lead only to correspondingly subtle changes in the spectra. Here, we demonstrate that several formulations of GB1 microcrystals yield very high quality SSNMR spectra, although only a subset of conditions enable growth of single crystals. We have characterized these polymorphs by X-ray powder diffraction and assigned the SSNMR spectra. Assignments of the 13C and 15N SSNMR chemical shifts confirm that the backbone structure is conserved, indicative of a common protein fold, but side chain chemical shifts are changed on the surface of the protein, in a manner dependent upon crystal packing and electrostatic interactions with salt in the mother liquor. Our results demonstrate the ability of SSNMR to reveal minor structural differences among crystal polymorphs. This ability has potential practical utility for studying the formulation chemistry of industrial and therapeutic proteins, as well as for deriving fundamental insights into the phenomenon of single-crystal growth.  相似文献   

8.
The 31P NMR spectra of a series of substituted aminomethanebisphosphonic acids (AMBAs) are reported. The AMBAs may crystallize as anhydrates or in hydrated form. The appearance of more than one 31P NMR signal in the solid state NMR spectra of AMBAs is an indication for a complex molecular order with non-equivalent phosphorus sites.Dedicated to Professor Dr. H. Kriegsmann on the occasion of his 70th birthday  相似文献   

9.
Characterization of clarithromycin polymorph was performed by solid-state cross polarization and magic angle spinning (CP/MAS) 13C-NMR spectroscopy. Two polymorphs, form II and form I, of clarithromycins indicated characteristic resonances of C1 carbonyl carbon at 176.2 and 175.2 ppm, respectively. Since each peak of C1 carbon was well separated in the spectrum of the two polymorphs, we performed quantitative analysis of the polymorphic fraction from the peak area of these peaks. The peak area of form I was found to linearly increase with an increase of its content, with a correlation coefficient of above 0.99. Solid-state NMR was found to be a useful technique to determine the characteristics of the polymorphic forms.  相似文献   

10.
Many molecular materials cannot be prepared as a "pure" (nonsolvate) crystalline phase by conventional crystal growth from solution due to the facile formation of solvate structures. In such cases, it may be possible to obtain the pure phase by a solid-state desolvation process, although such processes are generally associated with loss of crystal integrity, yielding a microcrystalline powder of the pure phase. This paper demonstrates the utility of modern powder X-ray diffraction techniques for obtaining structural understanding in such cases, focusing on a particular member of a structural family that is of wider relevance within the context of crystal engineering and design.  相似文献   

11.
A new divalent cadmium phosphonate, Cd2Cl2(H2O)4(H2L), has been synthesized from the ethylenediamine-N,N'-bis(methylenephosphonic acid) (H4L). The obtained microcrystalline compound has been characterized by solid-state IR spectra and 13C, 31P, and 113Cd CP MAS NMR. The static 13P NMR spectra have been also recorded to give the delta11, delta22, and delta33 chemical shift parameters for both compounds. The spectral data, collected for Cd2Cl2(H2O)4(H2L), are in an agreement with its X-ray powder diffraction structure solved with the cell dimensions a = 16.6105(10), b = 7.1572(4), and c = 6.8171(4) A and beta = 98.327(4) degrees. The octahedral coordination sphere of the cadmium atoms consists of two phosphonate oxygen atoms, two water oxygen atoms, and the two chlorine atoms. Cadmium atoms are bridged by the chlorine atoms forming four-membered rings. The phosphorus atoms exhibit a tetrahedral coordination with two oxygen atoms bonded to the cadmium atoms with P-O distances of 1.503(10) and 1.504(10) A. The third oxygen atom, showing a longer P-O distance (1.546(9) A), is not bonded to the metal center, nor is it bonded to a proton. The combined IR and NMR proton-phosphorus cross-polarization kinetic data together with the X-ray data confirm that the cadmium phosphonate has the zwitterionic structure (NH2(+)CH2P(O2Cd2)O-) similar to the initial aminophosphonic acid H4L.  相似文献   

12.
The crystal structure of the N-(3-hydroxysalicylidene)-4-methoxyaniline has been studied by single-crystal X-ray diffraction and solid-state NMR spectroscopy. This is the first example of a Schiff base derived from 3-hydroxysalicylaldehyde which displays in the asymmetric unit, four distinct molecules linked together in the crystal lattice by two types of intermolecular O–HO hydrogen bonds and formed by two independent tetramers. The 13C CPMAS NMR study corroborates the above results; the presence of different tautomeric equilibria in the same crystal structure is demonstrated and a qualitative estimation of the equilibrium mixture composition is given.  相似文献   

13.
A solvothermal synthetic procedure has been exploited to prepare the new [Cu(3)L(NO(3))(6)](n) coordination polymer (1) by reaction of the polydentate N,N'-{2,4-di-[(di-pyridin-2-yl)amine]-1,3,5-triazine}ethylenediamine ligand (opytrizediam L) with copper(II) nitrate. 1 has been structurally characterized by means of the conventional X-ray single-crystal diffraction technique. It crystallizes in the monoclinic C2/c space group with a = 16.830(3), b = 20.701(4), c = 18.170(4) Angstroms, beta = 113.26(3) degrees, V = 5816(2) Angstroms(3), Z = 4. 1 consists of trinuclear Cu(3)L(NO(3))(5) units connected by means of a nitrato-O,O' bridge. The resulting chains are involved in weak interchain head-to-tail pi-pi stacking interactions. In the presence of moisture, 1 is readily converted into the hydrated [Cu(3)L(NO(3))(5)](NO(3)).H(2)O form (2). This second phase, monoclinic P2(1)/c, consists of isolated [Cu(3)L(NO(3))(5)](+) and (NO(3))(-) ions which accommodate water molecules in the crystal lattice. These subtle chemical and structural modifications accompanying the moisture-triggered 1-to-2 transformation have been demonstrated through a X-ray powder diffraction study. A thermodiffractometric analysis has evidenced that this solid-to-solid transformation is fully reversible, i.e., thermally induced dehydration of 2 restores 1. The analysis of the temperature dependence of the magnetic susceptibility for 2 has revealed very weak ferromagnetic interactions, consistent with the large Cu...Cu separation (ca. 7.5 Angstroms) in the trinuclear units.  相似文献   

14.
Solid-state NMR is used to dramatically improve the efficiency and reliability of molecular crystal structure determination from X-ray powder diffraction data.  相似文献   

15.
A combination of solid-state 13C CPMAS NMR, 2H NMR, X-ray-determined anisotropic displacement parameters (ADPs), and molecular mechanics calculations were used to analyze the rotational dynamics of 1,4-bis[3,3,3-tris(m-methoxyphenyl)propynyl]benzene (3A), a structure that emulates a gyroscope with a p-phenylene group acting as a rotator and two m-methoxy-substituted trityl groups acting as a stator. The line shape analysis of VT 13C CPMAS and broad-band 2H NMR data were in remarkable agreement with each other, with rotational barriers of 11.3 and 11.5 kcal/mol, respectively. The barriers obtained by analysis of ADPs obtained by single-crystal X-ray diffraction at 100 and 200 K, assuming a sinusoidal potential, were 10.3 and 10.1 kcal, respectively. A similar analysis of an X-ray structure solved from data acquired at 300 K suggested a barrier of only 8.0 kcal/mol. Finally, a rotational potential calculated with a finite cluster model using molecular mechanics revealed a symmetric but nonsinusoidal potential that accounts relatively well for the X-ray-derived values and the NMR experimental results. It is speculated that the discrepancy between the barriers derived from low and high-temperature X-ray data may be due to an increase in anharmonicity, or to disorder, at the higher temperature values.  相似文献   

16.
The room temperature structure of Ba(5)Al(3)F(19) has been solved using electron microscopy and synchrotron powder diffraction data. One-dimensional (1D) (27)Al and ultrafast magic-angle-spinning (MAS) (19)F NMR spectra have been recorded and are in agreement with the proposed structural model for Ba(5)Al(3)F(19). The (19)F isotropic chemical shift and (27)Al quadrupolar parameters have been calculated using the CASTEP code from the experimental and density functional theory geometry-optimized structures. After optimization, the calculated NMR parameters of both the (19)F and (27)Al nuclei show improved consistency with the experimental values, demonstrating that the geometry optimization step is necessary to obtain more accurate and reliable structural data. This also enables a complete and unambiguous assignment of the (19)F MAS NMR spectrum of Ba(5)Al(3)F(19). Variable-temperature 1D MAS (19)F NMR experiments have been carried out, showing the occurrence of fluorine ion mobility. Complementary insights were obtained from both two-dimensional (2D) exchange and 2D double-quantum dipolar recoupling NMR experiments, and a detailed analysis of the anionic motion in Ba(5)Al(3)F(19) is proposed, including the distinction between reorientational processes and chemical exchange involving bond breaking and re-formation.  相似文献   

17.
Complete structure determination of an early-generation dendrimeric material has been carried out directly from powder X-ray diffraction data, using the direct-space genetic algorithm technique for structure solution followed by Rietveld refinement. This work represents the first application of modern direct-space techniques for structure determination from powder X-ray diffraction data in the case of a dendrimeric material and paves the way for the future application of this approach to enable complete structure determination of other dendrimeric materials that cannot be prepared as single crystal samples suitable for single crystal X-ray diffraction studies.  相似文献   

18.
Lattice parameters as a function of temperature for, and atomic coordinates of the low-temperature phase of, SrMo6S8 are reported from X-ray powder diffraction. The structure transforms atT 1=135(3) K from the rhombohedral high-temperature modification (R ,a rh=6.5630 (3) Å, rh=88.9982(2)°,V rh=282.55(5)Å3 at 298 K) into the triclinic low-temperature modification (P ,a tr=6.481(1)Å,b tr=6.572(1)Å,c tr=6.611(1)Å, tr=89.246(4)°, tr=89.304(4)°, tr=88.169(4)°,V tr=281.4(2)Å3 at 20K). The triclinic distortion is larger than in the Ca analogue, and similar to the Ba and Eu analogues.
Untersuchung des Tieftemperatur-Phasenübergangs von SrMo6S8 mittels Röntgenpulverdiffraktometrie (Kurze Mitt.)
Zusammenfassung Die Temperaturabhängigkeit der Gitterparameter und die Atomlagen der Tieftemperaturphase von SrMo6S8 wurden mittels Röntgenpulverdiffraktometrie bestimmt. Die rhomboedrische Hochtemperaturmodifikation (R ,a rh=6.5630(3)Å, rh=88.9982(2)°,V rh=282.55(5)Å3,T=298 K) wandelt beiT 1=135(3) K in die trikline Tieftemperaturmodifikation (P ,a tr=6.481(1)Å,b tr=6.572(1)Å,c tr=6.611(1)Å, tr=89.246(4)°, tr=89.304(4)°, tr=88.169(4)°,V tr=281.4(2)Å3,T=20 K) um. Die trikline Deformation ist stärker ausgeprägt als in der Ca-Verbindung und ähnlich jener der Ba- and Eu-Verbindung.
  相似文献   

19.
In this paper, we present a variable temperature (2)H solid-state NMR investigation of cryptophane-E:chloroform and cryptophane-E:dichloromethane inclusion complexes. The (2)H line shapes and nuclear spin relaxation rates were analyzed in terms of the distribution of C-D bond orientations and the time scale of the guest dynamics. It was found that encaged chloroform produces broad (2)H spectra, and that its reorientation is relatively slow with a correlation time of approximately 0.17 mus at 292 K. In contrast, the (2)H line shapes of encaged dichloromethane are narrow and the motion of this guest molecule is fast with a correlation time of approximately 1.4 ps at 283 K. The (2)H NMR data were complemented by an X-ray diffraction study of the cryptophane-E:dichloromethane structure, which was utilized in the analysis of the NMR parameters.  相似文献   

20.
We present an experimental NMR, X-ray diffraction (XRD), and computational study of the supramolecular assemblies of two crystalline forms of Ciprofloxacin: one anhydrate and one hydrate forming water wormholes. The resonance assignment of up to 51 and 54 distinct (13)C and (1)H resonances for the hydrate is reported. The effect of crystal packing, identified by XRD, on the (1)H and (13)C chemical shifts including weak interionic H-bonds, is quantified; (1)H chemical shift changes up to ~-3.5 ppm for CH···π contacts and ~+2 ppm (CH···O((-))); ~+4.7 ppm (((+))NH···O((-))) for H-bonds. Water intake induces chemical shift changes up to 2 and 5 ppm for (1)H and (13)C nuclei, respectively. Such chemical shifts are found to be sensitive detectors of hydration/dehydration in highly insoluble hydrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号