首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The initiation of radical polymerization of methyl methacrylate in the presence of benzoyl peroxide-metallocene (Cp2Fe, Cp2ZrCl2, and Cp2TiCl2; (C5Me5)2Fe, (C5Me5)2ZrCl2, and (AcC5H4)(C5H5)Fe) systems is studied. It is shown that a metallocene affects the rate of initiation and the initial rate of polymerization. On the basis of quantum-chemical calculations, a new mechanism of the initiation reaction may be advanced: Namely, the decomposition of benzoyl peroxide proceeds via the stage of complexation with a metallocene, while the nature of a metallocene determines the probability of complexation and decomposition.  相似文献   

2.
Methyl methacrylate was polymerized with Cp2YCl(THF) or IVB group metallocene compounds (i.e., Cp2ZrCl2 and Cp2HfCl2, etc.), in the presence of a Lewis acid like Zn(C2H5)2. The Lewis acid was complexed with methyl methacrylate, which avoided the metallocene compounds being poisoned with a functional group. A living polymerization was promoted through the use of metallocene/MAO/Zn(C2H5)2, which gave tactic poly(methyl methacrylate) with a high molecular weight. The polymer yield increases with polymerization time, which indicates that the propagation rate is zero in order in the concentration of the monomer. The polymer yield increases also with the concentration of Cp2YCl(THF), which indicates the yttrocene to be the real catalyst. When the polymerization temperature exceeds room temperature, the poly(methyl methacrylate) cannot be synthesized by the Cp2YCl(THF) catalyst. When the reaction temperature reachs −60 °C, the poly(methyl methacrylate) is high syndiotatic and molecular weight by the Cp2YCl(THF)/MAO catalyst system. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1184–1194, 2000  相似文献   

3.
Ethylene/1-hexene copolymers produced with MAO-activated binary metallocene catalysts, such as combinations Cp2ZrCl2 + (Me5Cp)2ZrCl2, (Ind-H4)2ZrCl2 + (Me5Cp)2ZrCl2, Cp2ZrCl2 + Cp2TiCl2, etc., contain three types of components. Two of the components can be attributed to active centers derived from each individual metallocene complex, and one or two materials are produced with different types of active center. Some of the binary catalysts generate the three components in comparable proportions, whereas other catalysts produce copolymers with one dominant component, which does not resemble the copolymers produced with the individual complexes. A mechanism is proposed for the formation of the “new” copolymer materials.  相似文献   

4.
The oligomerization and polymerization of 1‐pentene using Cp2ZrCl2, Cp2HfCl2, [(CH3)5C5]2ZrCl2, rac‐[C2H4(Ind)2]ZrCl2, [(CH3)2Si(Ind)2]ZrCl2, (CH3)2Si(2‐methylbenz[e]indenyl)2ZrCl2, Cp2ZrCl{O(Me)CW(CO)5}, Cp2ZrCl(OMe) and methylaluminoxane (MAO) has been studied. The degree of polymerization was highly dependent on the metallocene catalyst. Oligomers ranging from the dimer of 1‐pentene to polymers of poly‐1‐pentene with a molar mass Mw = 149000 g/mol were formed. Cp2ZrCl{O(Me)CW(CO)5} is a new highly active catalyst for the oligomerization of 1‐pentene to low molecular weight products. The activity decreases in the order Cp2ZrCl{O(Me)CW(CO)5} > Cp2ZrCl2 > Cp2ZrCl(OMe). Furthermore, poly‐1‐olefins ranging from poly‐1‐pentene to poly‐1‐octadecene were synthesized with (CH3)2Si(2‐methyl‐benz[e]indenyl)2ZrCl2 and methylaluminoxane (MAO) at different temperatures. The temperature dependence of the molar mass can be described by a common exponential decay function irrespective of the investigated monomer.  相似文献   

5.
With C1-, C2- or Cs-symmetric metallocenes, different intermediates and types of copolymers can be obtained from randomly distributed to alternating structures. Substitution of the Cp-ring in [Me2C-(tert-Bu Cp)(Flu)]ZrCl2 yields ethene/norbornene copolymers with an alternating structure, because the rigid norbornene can only be inserted from the open side of the metallocene. By variation of the polymerization parameters, copolymers with glass transition temperatures above 180°C and molecular weights > 100 000 are synthesized. By supporting different metallocenes on a silica/methylaluminoxane (MAO) carrier the deactivation reaction under electron and hydrogen transfer can be suppressed. This is proved for different Al/Zr ratios when trimethylaluminum (TMA) is used as cocatalyst by the lack of methane evolution by metallocenes and by near independence of the polymerization activity on the prereaction time, after reaching maximum activity. Aluminumalkyls and MAO leach Cp2ZrCl2 from the carrier, the leached metallocene is only active in polymerization by adding MAO.  相似文献   

6.
Et(ind)2ZrCl2 (C2H5(indenyl)2ZrCl2) confined inside regular pores of molecular sieves MCM-41 and VPI-5 were prepared and used to polymerize propene with high activity. Stereoregularity, melting point and molecular weight of polypropene obtained were increased and the polymerization behavior was quite different from that prepared with homogeneous Et(ind)2ZrCl2. The small, regular and cylindrical pores of MCM-41 and VPI-5 suppress the formation of inactive binuclear complexes between metallocene and metallocene, or between metallocene and methylaluminoxane, resulting in stable active sites and high activity in propene polymerization.  相似文献   

7.
A half‐metallocene‐type complex, La(C5Me5)[CH(SiMe3)2]2tetrahydrofuran (THF) 1 , showed the dual function of performing the controlled polymerizations of nonpolar monomers such as ethylene and styrene as well as polar monomers like methyl methacrylate, hexyl isocyanate, and acrylonitrile in high yields. On the other hand, the metallocene‐type rare‐earth metal complexes, [(C5H4SiMe3)2Y(μ‐Me)]2 2 and (C5Me5)2YMe(THF) 3 , showed relatively low catalytic activity. The structure of complex 2 was characterized by X‐ray analysis. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1382–1390, 2001  相似文献   

8.
An early transition metal metallocene compound, Cp2ZrCl2, with an anionic surfactant, sodium n‐dodecyl sulfate (SDS) as emulsifier and NaBPh4 as cocatalyst has been found to be an effective catalytic system for polymerization and copolymerization of monomers like styrene and methyl methacrylate in aqueous medium. The diameters of the latex particles were found to be in between 20 and 40 nm. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

9.
A novel carrier of ultradispersed diamond black powder (UDDBP) was used to support metallocene catalyst. Al2O3 was also used as carrier in order to compare with UDDBP. Supported catalysts for ethylene polymerization were synthesized by two different reaction methods. One way was direct immobilization of the metallocene on the support, the other was adsorption of MAO onto the support followed by addition of the metallocene. Four supported catalysts Cp2ZrCl2/UDDBP, Cp2ZrCl2/Al2O3, Cp2ZrCl2/MAO/UDDBP and Cp2ZrCl2/Al2O3/MAO were obtained. The content of the zirconium in the supported catalyst was determined by UV spectroscopy. The activity of the ethylene polymerization catalyzed by supported catalyst was investigated. The influence of Al/Zr molar ratio and polymerization temperature on the activity was discussed. The polymerization rate was also observed.  相似文献   

10.
A series of nickel complexes, including Ni(acac)2, (C5H5)Ni(η3‐allyl), and [NiMe4Li2(THF)2]2, that were activated with modified methylaluminoxane (MMAO) exhibited high catalytic activity for the polymerization of methyl methacrylate (MMA) but showed no catalytic activity for the polymerization of ethylene and 1‐olefins. The resulting polymers exhibited rather broad molecular weight distributions and low syndiotacticities. In contrast to these initiators, the metallocene complexes (C5H5)2Ni, (C5Me5)2Ni, (Ind)2Ni, and (Me3SiC5H4)2Ni provided narrower molecular weight distributions at 60 °C when these initiator were activated with MMAO. Half‐metallocene complexes such as (C5H5)NiCl(PPh3), (C5Me5)NiCl(PPh3), and (Ind)NiCl(PPh3) produced poly(methyl methacrylate) (PMMA) with much narrower molecular weight distributions when the polymerization was carried out at 0 °C. Ni[1,3‐(CF3)2‐acac]2 generated PMMA with high syndiotacticity. The NiR(acac)(PPh3) complexes (R = Me or Et) revealed high selectivity in the polymerization of isoprene that produced 1,2‐/3,4‐polymer at 0 °C exclusively, whereas the polymerization at 60 °C resulted in the formation of cis‐1,4‐rich polymers. The polymerization of ethylene with Ni(1,3‐tBu2‐acac)2 and Ni[1,3‐(CF3)2‐acac]2 generated oligo‐ethylene with moderate catalytic activity, whereas the reaction of ethylene with Ni(acac)2/MMAO produced high molecular weight polyethylene. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4764–4775, 2000  相似文献   

11.
This article discusses a new borane chain transfer reaction in olefin polymerization that uses trialkylboranes as a chain transfer agent and thus can be realized in conventional single site polymerization processes under mild conditions. Commercially available triethylborane (TEB) and synthesized methyl‐B‐9‐borabicyclononane (Me‐B‐9‐BBN) were engaged in metallocene/MAO [depleted of trimethylaluminum (TMA)]‐catalyzed ethylene (Cp2ZrCl2 and rac‐Me2Si(2‐Me‐4‐Ph)2ZrCl2 as a catalyst) and styrene (Cp*Ti(OMe)3 as catalyst) polymerizations. The two trialkylboranes were found—in most cases—able to initiate an effective chain transfer reaction, which resulted in hydroxyl (OH)‐terminated PE and s‐PS polymers after an oxidative workup process, suggesting the formation of the B‐polymer bond at the polymer chain end. However, chain transfer efficiencies were influenced substantially by the steric hindrances of both the substituent on the trialkylborane and that on the catalyst ligand. TEB was more effective than TMA in ethylene polymerization with Cp2ZrCl2/MAO, whereas it became less effective when the catalyst changed to rac‐Me2Si(2‐Me‐4‐Ph)2ZrCl2. Both TEB and Me‐B‐9‐BBN caused an efficient chain transfer in the Cp2ZrCl2/MAO‐catalyzed ethylene polymerization; nevertheless, Me‐B‐9‐BBN failed in vain with rac‐Me2Si(2‐Me‐4‐Ph)2ZrCl2/MAO. In the case of styrene polymerization with Cp*Ti(OMe)3/MAO, thanks to the large steric openness of the catalyst, TEB exhibited a high efficiency of chain transfer. Overall, trialkylboranes as chain transfer agents perform as well as B? H‐bearing borane derivatives, and are additionally advantaged by a much milder reaction condition, which further boosts their applicability in the preparation of borane‐terminated polyolefins. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3534–3541, 2010  相似文献   

12.
Two transition-metal atoms bridged by hydrides may represent a useful structural motif for N2 activation by molecular complexes and the enzyme active site. In this study, dinuclear MoIV-FeII complexes with bridging hydrides, CpRMo(PMe3)(H)(μ-H)3FeCp* ( 2 a ; CpR=Cp*=C5Me5, 2 b ; CpR=C5Me4H), were synthesized via deprotonation of CpRMo(PMe3)H5 ( 1 a ; CpR=Cp*, 1 b ; CpR=C5Me4H) by Cp*FeN(SiMe3)2, and they were characterized by spectroscopy and crystallography. These Mo−Fe complexes reveal the shortest Mo−Fe distances ever reported (2.4005(3) Å for 2 a and 2.3952(3) Å for 2 b ), and the Mo−Fe interactions were analyzed by computational studies. Removal of the terminal Mo−H hydride in 2 a – 2 b by [Ph3C]+ in THF led to the formation of cationic THF adducts [CpRMo(PMe3)(THF)(μ-H)3FeCp*]+ ( 3 a ; CpR=Cp*, 3 b ; CpR=C5Me4H). Further reaction of 3 a with LiPPh2 gave rise to a phosphido-bridged complex Cp*Mo(PMe3)(μ-H)(μ-PPh2)FeCp* ( 4 ). A series of Mo−Fe complexes were subjected to catalytic silylation of N2 in the presence of Na and Me3SiCl, furnishing up to 129±20 equiv of N(SiMe3)3 per molecule of 2 b . Mechanism of the catalytic cycle was analyzed by DFT calculations.  相似文献   

13.
Ferrocene (Fe(Cp)2) was added to a thermal initiation of reversible addition‐fragmentation chain transfer (RAFT) polymerization of methyl methacrylate (MMA) with 2‐cyanoprop‐2‐yl 1‐dithionaphthalate (CPDN) as the RAFT agent at 115 °C. It was found that the polymerization was greatly promoted after the addition of Fe(Cp)2 while retaining the characteristics of a typical RAFT polymerization. It was proposed that the formation of a redox initiation system, in which the poly(methyl methacrylate) peroxide (PMMAP) generated in situ as the oxidizer and Fe(Cp)2 as the reducer, was possibly the reason for the interesting polymerization phenomenon. Such a redox initiation mechanism was further validated with ascorbic acid (VC) as the reducer instead of Fe(Cp)2. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3607–3615, 2009  相似文献   

14.
The polymerization of methyl methacrylate (MMA) was investigated with tris(pentafluorophenyl)alane [Al(C6F5)3] and four metallocene imido complexes that varied in the complex symmetry/chirality, metal, and R group in the ?NR moiety, as well as a zirconocene enolate preformed from the imido zirconocene and MMA. This study examined four aspects of MMA polymerization: the effects of the metallocene imido complex structure on the polymerization activity and polymer tacticity, the degree of polymerization control, the elementary reactions of the imido complex with Al(C6F5)3 and MMA, and the polymerization kinetics and mechanism. There was no effect of the imido complex symmetry/chirality on the polymerization stereochemistry; the polymerization followed Bernoullian statistics, producing syndiotactic poly(methyl methacrylate)s with moderate (~70% [rr]) to high (~91% [rr]) syndiotacticity, depending on the polymerization temperature. Polymerization control was demonstrated by the number‐average molecular weight, which increased linearly with an increase in the monomer conversion to 100%, and the relatively small and insensitive polydispersity indices (from 1.21 to 1.17) to conversion. The reactions of the zirconocene imido complex with Al(C6F5)3 and MMA produced the parent base‐free imido complex and the [2 + 4] cycloaddition product (i.e., zirconocene enolate), respectively; the latter product reacted with Al(C6F5)3 to generate the active zirconocenium enolaluminate. The MMA polymerization with the metallocene imido complex and the alane proceeded via intermolecular Michael addition of the enolaluminate to the alane‐activated MMA involved in the propagation step. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3132–3142, 2003  相似文献   

15.
Reactions of phenylethynyl lithium with substituted cyclopentenones gave the corresponding pendant phenylethynyl substituted cyclopentadienes. Subsequent deprotonation and transmetallation with TiCl4·2THF, ZrCl4, and CpZrCl3 yielded the alkyne-functionalized metallocene complexes [C5Me4(CCPh)]2MCl2 [M = Ti (1), Zr (2)], Cp[C5Me4(CCPh)]ZrCl2 (3), and Cp[C5H2R′2(CCPh)]ZrCl2 [R′ = Me (4), Ph (5)]. These complexes were fully characterized by 1H NMR, 13C NMR, MS spectra, and elemental analysis. The molecular structure of 2 was determined by single crystal X-ray diffraction analysis. Ethylene polymerization was studied with these complexes in the presence of methylaluminoxane (MAO).  相似文献   

16.
We achieved metal‐catalyzed living radical polymerization (LRP) through “unique” catalyst transformation of iron (Fe) complex in situ. A dicarbonyl iron complex bearing a pentaphenylcyclopentadiene [(CpPh)Fe(CO)2Br: CpPh = η‐C5Ph5] is too stable itself to catalyze LRP of methyl methacrylate (MMA) in conjunction with a bromide initiator [H‐(MMA)2‐Br]. However, an addition of catalytic amount of triphenylphosphine (PPh3) for the system led to a smooth consumption of MMA giving “controlled” polymers with narrow molecular weight distributions (~90% conversion within 24 h; Mw/Mn = 1.2). FTIR and 31P NMR analyses of the complex in the model reaction with H‐(MMA)2‐Br and PPh3 demonstrated that the two carbonyl ligands were irreversibly eliminated and instead the added phosphine was ligated to give some phosphorous complexes. The ligand exchange was characteristic to the CpPh complex: the exchange was much smoother than other cyclopentadiene‐based complexes [i.e., CpFe(CO)2Br: Cp = C5H5; Cp*Fe(CO)2Br, Cp* = C5Me5]. The smooth transformation via the ligand exchange would certainly contribute to the controllability at the earlier stage in the polymerization as well as at the latter. The catalytic activity was enough high, as demonstrated by the successful monomer addition experiment and precise control even for higher molecular weight polymer (Mw/Mn < 1.2 under 1000‐mer condition). Such an in situ transformation from a stable complex would be advantageous to practical applications. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
The influence of differently substituted cyclopentadienyl CpR ligands on the reaction outcome of [CpRFe(CO)2]2 (CpR = C5Me5, EtC5Me4, 1,3-Bu2tC5H3) with As4 is examined. For C5Me5 and EtC5Me4, the pentaarsaferrocene derivatives [CpRFe(η5-As5)] are formed together with [(CpRFe)3As6] and [(CpRFe)3As6{(η3-As3)Fe}], while for 1,3-Bu2tC5H3 only [(CpRFe)3As6] is formed. The reaction of [(Me5C5Fe)3As6{(η3-As3)Fe}] with Tl+ leads to [{(Me5C5Fe)3As6Fe}2(μ,η33-As3)]2+ representing an unexpected dicationic cluster.  相似文献   

18.
The polymerization behavior of cyclohexyl methacrylate and trimethylsilyloxyethyl methacrylate with the catalytic system Cp2ZrMe2/B(C6F5)3/ZnEt2 was examined. Block copolymers of these bulky methacrylates with methyl methacrylate (MMA), having high molecular weights and relatively narrow molecular weight distributions, were prepared. n‐Butyl acrylate and tert‐butyl acrylate were polymerized with various catalytic systems based on zirconocene complexes. These polymerizations seemed to proceed to a nonquantitative yield, producing polymers with high molecular weights and relatively low polydispersities. This behavior indicated the presence of termination reactions in the initiation step, which appeared to be faster than the propagation step. Block copolymers of these acrylates with MMA were synthesized with the catalytic system rac‐Et(Ind)2ZrMe2/[B(C6F5)4][Me2NHPh]+/ZnEt2, starting from the polymerization of MMA. The block copolymers produced were well defined in most cases, as indicated by size exclusion chromatography, NMR, and differential scanning calorimetry measurements. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3337–3348, 2005  相似文献   

19.
PP-b-PMMA has been synthesized by a combination of metallocene catalysis and the controlled radical polymerization technique ATRP. Cp2ZrCl2/MAO and (Me4Cp)SiMe2(N-tert-Bu)TiCl2/MAO were used for the synthesis of atactic polypropylene. By a series of chemical modifications pp macroinitiators for the ATRP polymerization of MMA were synthesized. The PP-b-PMMA with polydispersities from 1.8–2.8 and an Mn ranging from 8 to 26 kg/mol was characterized by 1H-NMR,SEC and DSC.  相似文献   

20.
Comparative analysis of catalytic activity of substituted bis(cyclopentadienyl)zirconium dichlorides with the general formula (R n Cp)2ZrCl2 (Cp2ZrCl2, (MeCp)2ZrCl2, (PriCp)2ZrCl2, (Pri 2Cp)2ZrCl2, (BunCp)2ZrCl2, (BuiCp)2ZrCl2, (ButCp)2ZrCl2, Cp* 2ZrCl2 (Cp*=Me5C5), (Me3SiCp)2ZrCl2, (cyclo-C6H11Cp)2ZrCl2, and [(cyclo-C6H11)2Cp]2ZrCl2) in ethene polymerization using polymethylalumoxane as the cocatalyst was performed. The molecular mass characteristics of the polyethylene samples obtained were determined. A linear correlation of the specific activity of the catalysts and the turnover number with the electronic and steric characteristics of substituents at the Cp ring of the complexes was established for the first time. Analysis of the polymerization kinetics and the obtained correlation between the specific activity of the complexes and molecular mass characteristics of the polyethylene samples suggest that alkyl substituents participate in reactions responsible for the restriction of the polymer chain growth and regeneration of the active center. These interactions most likely involve associates of AlMe3 with polymethylalumoxane molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号