首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Series sorbents of Cu, Zn, Ni, Ce and Ag metal components supported on γ-Al2O3 carrier for removing thiophene from benzene were prepared by conventional and ultrasound-assisted incipient-wetness impregnation method. The static adsorption experiments were carried out in the thiophene-benzene solution with thiophene concentration of 500?mg/L. The results show that the desulfurization activity of all γ-Al2O3 sorbents modified by different metal components obviously increase, among which the sorbent modified by silver nitrate has the best performance. The active components of sorbents from Cu, Zn, Ni, Ce nitrates loaded on γ-Al2O3 carrier are their oxides. Besides Ag2O, the products of silver nitrate thermal decomposition in sorbent prepared still have Ag0 and Ag–O–Al species. The assistant ultrasound in the process of sorbent preparation can not only shorten the impregnation time, but also enrich the pore structure of sorbent and improve the size and distribution of the Ag species, which is favorable to the removal of thiophene from benzene. The desulfurization capacity of sorbent changes with the Ag content loaded. The sorbent with 15?% quality content of Ag prepared by ultrasound-assisted impregnation method has the highest desulfurization efficiency. It could reduce the thiophene concentration to 1.7?mg/L from 500?mg/L at room temperature and ambient pressure, with the desulfurization efficiency of more than 99?%, when the ratio of sorbent to solution was 1:4?(g/mL).  相似文献   

2.
The influence of titanium oxide on the surface interactions of MO (M=Cu and Ni)/γ-Al2O3 catalysts has been studied by using XRD, LRS and XPS. For the catalysts with titania loadings lower than 0.56 mmol Ti4+/100 m2 Al2O3 (i.e., the dispersion capacity), the dispersion of MO oxides on the surface of γ-Al2O3 support is significantly suppressed by the dispersed Ti4+ ions. The inhibiting effect is dependent on the properties of MO oxides. When titania loadings are considerably higher than the dispersion capacity, MO oxides exhibit a rather stronger interaction with the formed TiO2 particles than the γ-Al2O3 support, and some of the dispersed M2+ ions might be accommodated by the vacant sites on TiO2. Therefore, the catalysts can be considered as the compositions of MO/TiO2 and MO/TiO2/γ-Al2O3 (dispersed titania). TPR results show that either dispersed titania or formed TiO2 particles can promote the reduction of copper oxide species, but the latter to a greater extent. Based on the consideration of the incorporation model, it is proposed that the surface structure of the support plays an important role in surface interactions.  相似文献   

3.
The nature and stability of surface species of CuCl2 supported on α-Al2O3, γ-Al2O3, and SiO2 were investigated by using X-ray diffraction techniques and reflectance spectroscopy. No specific chemical interaction of CuCl2 is observed on an inert α-Al2O3 support, as opposed to hydrated carriers as SiO2 and γ-Al2O3. On these supports the coordination sphere of Cu2+ consists of surface groups (OH? or O? at drying and activation, resp.), H2O and Cl?, with the H2O ligands decreasing in concentration in the process of impregnation, drying and calcination. γ-Al2O3 samples, calcined at 400°C, show γ-Cu2(OH)3Cl as opposed to CuAl2O4 at higher temperatures. The absence of Cu2(OH)3Cl on SiO2-supported samples is related to the acid-base characteristics of the carriers. The various supports can be arranged in the following order of stability of the complexes formed: γ-Al2O3 > SiO2 ? -Al2O3.  相似文献   

4.
The Ga2O3-Al2O3-ZnO (GAZ) multi-component spinel powders with incorporated Cu2+, Co2+, Fe2+, Ni2+, Mn2+ and In2+ metal cations were synthesized by co-precipitation method from a mixed solution of nitrate salts. Spinel crystal structure of each composition was confirmed by XRD measurements. The multi-component oxide powders were tested in the reduction of nitrogen oxide (NO) under lean conditions. Among the catalysts tested, In2O3-containing GAZ with a pure spinel phase structure showed promising catalytic activity in the NO reduction in the presence of 10% H2O vapor. In addition, the effect of H2O vapor and SO2 on the selective reduction of NO over In2O3-GAZ/cordierite and In2O3-GAZ/metal honeycombs catalysts has been investigated.  相似文献   

5.
New anisotropic ESR spectra of Co2+ doped sapphire, different from hitherto known, are reported. The new spectra which are observed, beside the well-known spectra of α-Al2O3:Co2+, are shown to form two sets, each one consisting of six spectra (1–6) and (7–12). The spectra of both sets are proven to be interrelated by B3a symmetry. g and A tensors for each set will be given. Evidence is given that the two sets are to be assigned to the defects α-Al2O3:Co2+,H+ and α-Al2O3:Co2+,X+. The former is concluded to consists of a Co2+ ion at the substitutional site (c) and a proton located in a potential minimum along a straight line between O2- ions situated in O2+ triangles above and below the CO2+ ion. The potential function for the proton has been calculated by quantum-chemical calculations to clucidate the geometrical structure of the paramagnetic center. The α-Al2O3:Co2+,X+ could not be fully analyzed but some evidence is presented, that X+ might be alkali ions.  相似文献   

6.
Catalysts of Nb2O5/γ-Al2O3 were prepared by aqueous solution impregnation. The state of niobia species on surface of γ-Al2O3 is characterized by using the technology of X-ray power diffraction (XRD) and analyzed using the “incorporation model”. The acidity and the nature of acid sites of the catalysts were evaluated by means of Fourier transform infrared (FTIR) spectroscopy of adsorbed pyridine. The catalytic activity of Nb2O5/γ-Al2O3 catalysts was evaluated by a condensation reaction from isobutene and isobutyraldehyde to 2,5-dimethyl-2,4-hexadiene. The results of XRD indicate that the dispersion capacity of niobia on γ-Al2O3 is about 0.76 mmol Nb per 100m2 γ-Al2O3, which is almost identical to the theoretical value (0.75 mmol Nb per 100m2 γ-Al2O3) calculated by the “incorporation model”. The results of Py-IR and catalytic activity evaluation indicate that the acidity feature is related to the state of dispersed niobia species as well as the loading of niobia onto the surface of γ-Al2O3 support.  相似文献   

7.
The oxidation of oxalate ions with ozone in aqueous solution has been studied, and the effects of pH, temperature, and reactant concentrations on the reaction rate and efficiency have been estimated. The oxidative decomposition is most effective in alkaline medium (pH ≥ 10) at 50°C. Under these conditions, the consumption of ozone is 0.6±0.1 g per gram of oxalate or 1.1±0.1 mol per mole of oxalate, which corresponds to the stoichiometry (COO)2 + O3 + H2O → 2CO32– + O2 + 2H+.  相似文献   

8.
Polysiloxane xerogels with a functional group content of 1.1?C1.9 mmol/g have been obtained by the hydrolytic condensation of the alkoxysilanes Si(OC2H5)4 and [(C2H5O)3Si(CH2)3S2]2 in the 2 : 1, 4 : 1, and 8 : 1 ratios. It has been demonstrated by 13C and 29Si CPMAS NMR spectroscopy that the xerogels have a polysiloxane framework with dipropyl tetrasulfide bridges, silanol groups, unhydrolyzed ethoxyl groups, and hydrogen-bonded water molecules on the surface. The xerogels have a porous structure. As the molar ratio of the reacting alkoxysilanes is increased in the above-specified range, the specific surface area of the xerogel increases (from 89 to 312 m2/kg) and the same is valid for other structure-adsorption characteristics. The synthesized polysiloxane xerogels readily sorb Hg2+ from acidified solutions. Their static sorption capacity can be as high as 1.5 g Hg per gram of sorbent. However, in the course of time, the 1 : 1 complexes forming on the xerogel surface undergo transformations accompanied by the release of mercury sulfide and/or Hg2+ reduction to mercury metal.  相似文献   

9.
Sorption of CO2 in the presence of water vapor by the K2CO3—-Al2O3 composite sorbent was studied by IR spectroscopy in situ, X-ray diffraction analysis, and the differentiating dissolution method and reasons for a decrease in its dynamic capacity are given. The samples containing K2CO3·1.5H2O in pores are characterized by the maximal dynamic capacity. A mechanism for CO2 sorption was proposed, which qualitatively explains the obtained dependence of the capacity on the water content in the composite sorbent. A high dynamic capacity can be maintained by regeneration of the sorbents by water vapor at 170 °N. The capacity of the sorbents decreases during the first 10 sorption—regeneration cycles due to the formation of an inactive phase of potassium aluminum carbonate.  相似文献   

10.
The influence of redox treatments on the state of palladium in the K6[SiW11PdO39]·11H2O/γ-Al2O3 system was investigated by diffuse-reflectance IR (DRIFT) spectroscopy using CO as a probe molecule. The K6[SiW11PdO39]·11H2O heteropoly-compound (HPC) and starting γ-Al2O3 support were studied for comparison. It was shown that palladium is present in HPC mainly in the form of Pd2+ ions. Treatment of HPC in an H2 flow results in complete reduction of palladium to Pd0. The HPC is unstable in redox cycles at temperatures above 373 K. When the HPC was supported on alumina, the Keggin units were stabilized on the support surface and Pd+ formed in the oxidized sample. The supported K6[SiW11PdO39]·11H2O/γ-Al2O3 catalyst displays higher thermal stability and does not decompose during redox treatments at temperatures up to 723 K. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya. No. 7, pp. 1271–1275. July, 1999.  相似文献   

11.
Iron supported catalysts were prepared by impregnation of several acid-modified λ-Al2O3 samples with a K4[Fe(CN)6] aqueous solution. A concentration range between 0–20 mmole H+ added · g?1λ-Al2O3 was used. The quantitative determination of the acid site and iron contents of the modified λ-Al2O3 samples was followed by UV spectrometry and F.A.A.S., respectively. An increasing final iron content of the catalysts with increasing acid site content of the support is observed. The catalytic activity for ammonia synthesis was followed at atmospheric pressure and 593 K (N2/H2 = 1/3). An increasing ammonia production per gram of catalyst with increasing protonation of the support was observed in the range 0–8 mmole H+ added · g?1λ-Al2O3. The catalytic activity of iron supported catalysts prepared by this method was higher (up to twofold) that of a catalyst prepared by the incipient wetness method.  相似文献   

12.
A range of potassium-based alumina sorbents were fabricated by impregnation of alumina with K2CO3 to examine the effects of the structural and textural properties of alumina on the CO2 sorption and regeneration properties. Alumina materials, which were used as supports, were prepared by calcining alumina at various temperatures (300, 600, 950, and 1,200 °C). The CO2 sorption and regeneration properties of these sorbents were examined during multiple tests in a fixed-bed reactor in the presence of 1 vol% CO2 and 9 vol% H2O. The regeneration capacities of the potassium-based alumina sorbents increased with increasing calcination temperature of alumina. The formation of KHCO3 increased with increasing calcination temperature during CO2 sorption, whereas the formation of KAl(CO3)(OH)2, which is an inactive material, decreased. These results is due to the fact that the structure of alumina by the calcination temperature is related directly to the formation of the by-product [KAl(CO3)(OH)2]. The structure of alumina plays an important role in enhancing the regeneration capacity of the potassium-based alumina sorbent. Based on these results, a new potassium-based sorbent using δ-Al2O3 as a support was developed for post-combustion CO2 capture. This sorbent maintained a high CO2 capture capacity of 88 mg CO2/g sorbent after two cycles. In particular, it showed a faster sorption rate than the other potassium-based alumina sorbents examined.  相似文献   

13.
《Chemical physics letters》2006,417(1-3):137-142
The aim of the Letter is to elucidate the nature of metal-support interaction in the 2 wt% Rh/Al2O3 catalyst obtained by annealing Rh–O–Al xerogel at 1113 K in air.XPS, HRTEM, and XRD results reveal that during the Rh–O–Al xerogel annealing in air, rhodium incorporates into forming alumina, which results mostly in Rh4+/δ-Al2O3 solid solution formation.However, in the course of the catalyst reduction at 773 with H2 and at 823 K with CH4 the Rh4+/δ-Al2O3 solid solution transforms into Rh–Al alloy. The islands of rhodium form on the surface of the Rh–Al alloy nanocrystallites if the reduction is slow enough.  相似文献   

14.
Potassium-based sorbents using γ-Al2O3 or TiO2 as a support or an additive material have disadvantages in terms of their thermal stability and cyclic CO2 capture. To overcome the shortcomings of these sorbents, a novel potassium-based sorbent (KSnI30) using SnO2 was developed in this study. The KSnI30 sorbent formed only K2CO3 and SnO2 phases without any inactive alloy species even after calcination at high temperatures (500–700 °C), indicating the good thermal stability of the KSnI30 sorbent regardless of the calcination temperature. Furthermore, the KSnI30 sorbent has an excellent regeneration property (above 98 %), as well as high CO2 capture capacities (89–94 mg CO2/g sorbent). Its excellent regeneration property is due to the formation of a KHCO3 phase without by-products during CO2 sorption. These results of the present study demonstrate that the SnO2 shows promise as a new support or an additive material to replace TiO2 and γ-Al2O3 in the preparation of a regenerable potassium-based sorbent for post-combustion CO2 capture with good thermal stability and excellent regeneration property.  相似文献   

15.
为进一步提高铈锆固溶体储放氧性能,增强乙苯二氧化碳氧化脱氢反应性能,采用共沉淀法合成出氧化铝质量比为50%的铈锆铝氧化物催化剂。通过现代仪器分析表征技术,研究了Al加入对铈锆固溶体复合氧化物晶体结构、储放氧能力的影响。结果表明,Al的加入可起到"扩散阻碍"作用,且有效抑制铈锆固溶体晶粒长大,使得铈锆铝氧化物催化剂比表面积较铈锆固溶体增加了51.8 m~2/g,储放氧性OSC值提高了69.4μmol/g,将铈锆铝氧化物催化剂用在乙苯氧化脱氢5 h反应中,发现乙苯转化率提高了10%。  相似文献   

16.
The catalytic hydrogenation of CO was studied over Mn- and/or Fe-promoted Rh/γ-Al2O3 catalysts. The catalysts were characterized by means of XRD, BET, H2-TPR·H2-TPD, XPS and DRIFTS. CO hydrogenation results showed that the doubly Mn- and Fe-promoted Rh/γ-Al2O3 catalysts exhibited superior catalytic activity and better ethanol selectivity. The DRIFTS results showed that Mn promoter stabilized the adsorbed CO on Rh+ and Fe stabilized adsorbed CO on Rh+ and Rh0, especially Rh0. The fact that doubly Mn- and Fe-promoted Rh/γ-Al2O3 owned more (Rhx0–Rhy+)–O–Fe3+·(Fe2+) active species was proposed to be a crucial factor accounting for its higher ethanol selectivity.  相似文献   

17.
This study reports a new approach of preparation of carbon dots coated on aluminum oxide nanofibers (CDs/Al2O3NFs) nanocomposite and reusing the spent adsorbent of lead (Pb2+) ions loaded adsorbent (Pb2+-CDs/Al2O3NFs) nanocomposite for latent fingerprint detection (LFP) after removing Pb2+ ions from aqueous solution. CDs/Al2O3NFs nanocomposite was prepared by using CDs and Al2O3NFs with adsorption processes. The prepared nanocomposite was then characterized by using UV–visible spectroscopy (UV–visible), Fourier transforms infrared spectroscopy (FTIR), Fluorescence, X-ray diffraction pattern (XRD), scanning electron microscope (SEM), Transmission electron microscopy (TEM), Energy-dispersive X-ray spectroscopy (EDS), Zeta potential, X-ray photoelectron spectroscopy (XPS). The average size of the CDs was 51.18 nm. The synthesized CDs/Al2O3NFs nanocomposite has proven to be a good adsorbent for Pb2+ ions removal from water with optimum pH 6, dosage 0. 2 g/L. The results were best described by the Freundlich Isotherm model. The adsorption capacity of CDs/Al2O3NFs nanocomposite showed the best removal of Pb2+ ions with qm = (177. 83 mg/g), when compared to the previous reports. This adsorption followed the pseudo-second order kinetic model. ΔG and ΔH values indicated spontaneity and the endothermic nature of the adsorption process. CDs/Al2O3NFs nanocomposite therefore showed potential as an effective adsorbent. The data were observed from adsorption–desorption after 6 cycles which showed good adsorption stability and re- usability of CDs/Al2O3NFs nanocomposite. Furthermore, the spent adsorbent of Pb2+-CDs/Al2O3NFs nanocomposite has proven to be sensitive and selective for LFP detection on various porous substrates. Hence Pb2+-CDs/Al2O3NFs nanocomposite can be reused as a good fingerprint labelling agent in LFP detection so as to avoid secondary environmental pollution by disposal of the spent adsorbent.  相似文献   

18.
The spinel Li‐Mn‐O‐F compound cathode materials were synthesized by solid‐state reaction from calculated amounts LiOH‐H2O, MnO2(EMD) and LiF. The results of the electrochemical test demonstrated that these materials exhibited excellent electrochemical properties. It's initial capacity is ‐ 115 mAh.g1 and reversible efficiency is about 100%. After 60 cycles, its capacity is still around 110 mAh.g1 with nearly 100% reversible efficiency. The spinel Li‐Mn‐O‐F compound possibly has two structure models: interstitial model [Li]‐[Mn3+xMn4+2‐x]O4Fδ, in which the fluorine is located on the interstice of crystal lattice, and substituted model [Li]‐[Mn3+xMn4+2‐x]O4‐δFδ, which the fluorine atom substituted the oxygen atom. The electrochemical result supports the interstitial model [Li][Mn3+xMn4+2‐x]O4Fδ.  相似文献   

19.
采用等体积浸渍法制备了Cu-K-La/γ-Al2O3催化剂,考察了KCl对该催化剂催化HCl氧化制Cl2反应性能的影响. 当KCl的负载量为5 wt%时,Cu-K-La/γ-Al2O3催化剂表现出较好的催化活性和稳定性,可在较大的原料气空速变化范围内使用. 在0.1 MPa,360 ℃,空速450 L/(kg-cat·h)和HCl/O2摩尔比为2:1的反应条件下,Cu-K-La/γ-Al2O3催化剂上HCl转化率在100 h内保持85%以上. 表征结果表明,Cu,K和La物种均高度分散于γ-Al2O3载体表面;一定量KCl的加入可降低Cu2+ → Cu+的还原温度,从而提高Cu2+活性中心的催化活性.  相似文献   

20.
The maximum monolayer dispersion (the threshold) for WO3 on γ-Al2O3 calcined at 500°, 550°, 600°, and 640°C has been determined quantitatively by XRD (amount of crystalline phase) and XPS (intensity ratios Iw4f/IAl2). The results show that if the amount of WO3 loaded is lower than the maximum monolayer dispersion, WO3 will react with γ-Al2O3 to form surface compound due to mutual ionic interaction, and will be dispersed on γ-Al2O3 surface as monolayer then. In case the amount is higher than this value, the residual crystalline WO3 will remain. The maximum monolayer dispersion (threshold) is 0.21 g and 0.20 g WO3/100 m2 γ-Al3O3 by XRD and XPS respectively. It agrees with the value (0.189 g WO3/100 m2 or 4.90 × 10?18 W atoms/m2) calculated from the model on assumption that the WO3 is dispersed as a closed-packed monolayer on γ-Al2O3 surface. Inasmuch as WO3/γ-Al2O3 system is stable up to higher temperature, e.g. 700°C, than MoO3/γ-Al2O3 system, WO3 seems unfavorable to form new bulk compound with γ-Al2O3 at that temperature. However, Al2(MoO4)3 forms perceptibly in MoO3/γ-Al2O3 system at 500°C. Besides, the size of residual crystalline WO3 in WO3/γ-Al2O3 is much smaller than that of MoO3 in MoO3/γ-Al2O3. It might be the reason that WO3/γ-Al2O3 catalyst is superior to MoO3/γ-Al2O3 in hydrodesulfurization (HDS) or hydrodenitrogenation (HDN) in some cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号