首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
We present the first study of subwavelength discrete solitons in nonlinear metamaterials: nanoscaled periodic structures consisting of metal and nonlinear dielectric slabs. The solitons supported by such media result from a balance between tunneling of surface plasmon modes and nonlinear self-trapping. The dynamics in such systems, arising from the threefold interplay between periodicity, nonlinearity, and surface plasmon polaritons, is substantially different from that in conventional nonlinear dielectric waveguide arrays. We expect these phenomena to inspire fundamental studies as well as potential applications of nonlinear metamaterials, particularly in subwavelength nonlinear optics.  相似文献   

2.
Although the invention of the metamaterials has stimulated the interest of many researchers and possesses many important applications, the basic design idea is very simple: composing effective media from many small structured elements and controlling its artificial EM properties. According to the effective-media model, the coupling interactions between the elements in metamaterials are somewhat ignored; therefore, the effective properties of metamaterials can be viewed as the “averaged effect” of the resonance property of the individual elements. However, the coupling interaction between elements should always exist when they are arranged into metamaterials. Sometimes, especially when the elements are very close, this coupling effect is not negligible and will have a substantial effect on the metamaterials’ properties. In recent years, it has been shown that the interaction between resonance elements in metamaterials could lead to some novel phenomena and interesting applications that do not exist in conventional uncoupled metamaterials. In this paper, we will give a review of these recent developments in coupled metamaterials. For the “metamolecule” composed of several identical resonators, the coupling between these units produces multiple discrete resonance modes due to hybridization. In the case of a “metacrystal” comprising an infinite number of resonators, these multiple discrete resonances can be extended to form a continuous frequency band by strong coupling. This kind of broadband and tunable coupled metamaterial may have interesting applications. Many novel metamaterials and nanophotonic devices could be developed from coupled resonator systems in the future.  相似文献   

3.
In this paper, we demonstrate numerically various phenomena and possibilities that can be realized in THz metamaterials made of phonon-polariton materials. Such phenomena include hyperbolic dispersion relation, subwavelength imaging using backward propagation and backward radiation, total transmission and subwavelength guiding exploiting Mie-resonant scattering in permittivity near zero host, and toroidal dipolar response. The systems that we use to demonstrate most of these phenomena are two-dimensional periodic systems of μm-scale rods in a host, where both rods and host are made of polaritonic alkali-halide materials.  相似文献   

4.
We consider some nonlinear phenomena in metamaterials with negative refractive index properties. Our consideration includes a survey of previously known results as well as identification of the phenomena that are important for applications of this new field. We focus on optical behavior of thin films as well as multi-wave interactions.  相似文献   

5.
6.
Polarization is an important characteristic of electromagnetic (EM) waves, and efficient manipulations over EM wave polarizations are always desirable in practical applications. Here, we review the recent efforts in controlling light polarizations with metamaterials, at frequencies ranged from microwave to visible. We first presented a 4 × 4 version transfer matrix method (TMM) to study the scatterings by an anisotropic metamaterial of EM waves with arbitrary propagating directions and polarizations. With the 4 × 4 TMM, we discovered several amazing polarization manipulation phenomena based on the reflection geometry and proposed corresponding model metamaterial systems to realize such effects. Metamaterial samples were fabricated with the help of finite-difference-time-domain (FDTD) simulations, and experiments were performed to successfully realize these ideas at both microwave and visible frequencies. Efforts in employing metamaterials to manipulate light polarizations based on the transmission geometry are also reviewed.  相似文献   

7.
Jia&#  ming HAO&#  &#  &#  &#  &#  Min QIU&#  &#  &#  &#  LeiZHOU&#  &#  &#  &# 《Frontiers of Physics》2010,5(3):291
Polarization is an important characteristic of electromagnetic (EM) waves, and efficient manipulations over EM wave polarizations are always desirable in practical applications. Here, we review the recent efforts in controlling light polarizations with metamaterials, at frequencies ranged from microwave to visible. We first presented a 4 × 4 version transfer matrix method (TMM) to study the scatterings by an anisotropic metamaterial of EM waves with arbitrary propagating directions and polarizations. With the 4 × 4 TMM, we discovered several amazing polarization manipulation phenomena based on the reflection geometry and proposed corresponding model metamaterial systems to realize such effects. Metamaterial samples were fabricated with the help of finite-difference-time-domain (FDTD) simulations, and experiments were performed to successfully realize these ideas at both microwave and visible frequencies. Efforts in employing metamaterials to manipulate light polarizations based on the transmission geometry are also reviewed.  相似文献   

8.
The rise of plasmonic metamaterials in recent years has unveiled the possibility of revolutionizing the entire field of optics and photonics, challenging well-established technological limitations and paving the way to innovations at an unprecedented level To capitalize the disruptive potential of this rising field of science and technology, it is important to be able to combine the richness of optical phenomena enabled by nanoplasmonics in order to realize metamaterial components, devices, and systems of increasing complexity. Here, we review a few recent research directions in the field of plasmonic metamaterials, which may foster further advancements in this research area. We will discuss the anomalous scattering features enabled by plasmonic nanoparticles and nanoclusters, and show how they may represent the fundamental building blocks of complex nanophotonic architectures. Building on these concepts, advanced components can be designed and operated, such as optical nanoantennas and nanoantenna arrays, which, in turn, may be at the basis of metasurface devices and complex systems. Following this path, from basic phenomena to advanced functionalities, the field of plasmonic metamaterials offers the promise of an important scientific and technological impact, with applications spanning from medical diagnostics to clean energy and information processing.  相似文献   

9.
各向异性超常材料中倒退波的传播研究   总被引:3,自引:0,他引:3       下载免费PDF全文
周建华  刘虹遥  罗海陆  文双春 《物理学报》2008,57(12):7729-7736
研究了完全各向异性超常材料中的倒退波传播现象,得到了在材料本征轴和传输轴成任意角度情形下倒退波形成的条件,分析了超常材料的介电张量和磁导率张量、电磁波的偏振方式对倒退波形成和传播的影响. 在此基础上,进一步分析了几种不同色散曲线关系的各向异性超常材料中倒退波的产生情况,获得了电磁波波矢和坡印亭矢量(能流)夹角的具体表达式和倒退波传播的一般性结论. 此外,还研究了近零介电常数超常材料中倒退波的传播特性,发现在此类超常材料中倒退波只能是完美倒退波. 关键词: 超常材料 负折射 倒退波 各向异性  相似文献   

10.
Metamaterials and their application in microwaves: A review   总被引:1,自引:0,他引:1  
A metamaterial is a composite material that has attracted the attention of researchers since the late 1990s-early 2000s. This material contains an artificial periodic structure, which modifies its permittivity and permeability and, thereby, makes it possible to control the dispersion, refraction, and reflection of electromagnetic waves in the metamaterial. Analytical and experimental studies of the properties of metamaterials, as well as their applications, cover a wide frequency range from radio waves to the visible range. In recent years, considerable progress has been made toward the application of these materials in the microwave range (1–100 GHz). Works on development and application of metamaterials in the microwave range published over the last 8–10 years are reviewed. Artificial transmission lines as 1D metamaterials are discussed. Resonators, filters, and phase shifters based on the “metamaterial philosophy” are considered. Special attention is given to the application of metamaterials in the antenna technology.  相似文献   

11.
During the past decade electromagnetic metamaterials have realized many exotic phenomena that are difficult or impossible using naturally occurring materials. It is their resonantly enhanced interaction with electromagnetic waves that underpins their attractive qualities, which are increasingly important in the terahertz frequency range. Passive and active terahertz metamaterials and devices have enabled novel functionality and unprecedented terahertz device performance. These demonstrations prove their potential to address the so‐called terahertz gap, a technology vacuum associated with the deficiency of natural materials with a desirable terahertz response.  相似文献   

12.
Recent results obtained on semiconductor-based photonic crystal devices are of great promise for future developments of photonic crystals and their applications to ‘all-photonic’ integrated circuits. Device performance mostly relies on the strong confinement of light thanks to photonic bandgap effects, but photonic crystals also exhibit remarkable dispersion properties in their transmission bands, thus opening the perspective of new optical functionalities. Slow light, supercollimation, superprism, and negative refraction effects are among the fascinating phenomena which strongly motivate the community. Studies in these directions parallel those on metamaterials, which are expected to provide a simultaneous control of the dielectric permittivity and of the magnetic permeability. In this article, we briefly review some important advances on photonic crystals and metamaterials, as these two topics received a particular attention during the “Nanosciences et Radioélectricité” workshop organized by CNFRS in Paris on the 20th and 21st of March 2007. To cite this article: J.-M. Lourtioz, C. R. Physique 9 (2008).  相似文献   

13.
Cavity-coupled plasmonic structure is demonstrated to be a simple and effective tool to manipulatelight,enhance the biosensing figure of merit, and control the polarization state. In this Letter, we demonstrate the tunability of the chiroptical effect of cavity-coupled chiral structure, i.e., sandwich chiral metamaterials(SCMs), in whichradiation coupling dominates the interaction between particles. Two types of SCMs whose building blocks are 3D chiral and 2D chiral, respectively, are numerically studied. Distinct responses are observed in these two materials. The chiroptical effect can be effectively manipulated and enhanced in the 2D case, while the SCMs consisting of 3D chiral layers keep the chiroptical effecta constant. A theoretical analysis based on matrix optics is developed to explain the corresponding phenomena, which gives a reasonable agreement with numerical simulations.  相似文献   

14.
马晓亮  李雄  郭迎辉  赵泽宇  罗先刚 《物理学报》2017,66(14):147802-147802
自从电磁波被发现和应用以来,利用各种材料或者结构调节电磁波的辐射行为、构造高性能的电磁辐射器件一直是研究人员的追求目标.经过百余年的发展,电磁辐射器件的方向性提高、带宽拓展等技术逐渐达到瓶颈.受自然材料电磁特性的限制,微带天线、喇叭天线等传统电磁辐射器件存在体积重量大、工作带宽窄、无法快速动态调控等缺陷,难以满足日益发展的通信技术的需求.近年来出现的亚波长结构可在深度亚波长尺度下调控电磁波的传输行为,出现了多种奇异的电磁现象,完善了传统的电磁学理论,在一定程度上突破了传统材料电磁特性的限制,形成全新的电磁辐射技术,有效解决了传统天线存在的口径大、厚度高、带宽窄等难题,促进了电磁学、光子学、材料学等领域的发展.这种基于超构材料的新型天线可以被称为超构天线,具有高方向性、低副瓣、超宽带、可重构等传统天线难以实现的功能.本文主要回顾了近年来基于亚波长超构材料的超构天线技术的发展现状和取得的成果,介绍了超构材料在亚波长尺度下对电磁波振幅、相位、偏振态等的衍射调控机理,以及在此基础上形成的新型辐射器件,例如相控阵天线、高方向性天线、低雷达散射截面天线,基于亚波长结构的多种偏振调控器件及其在天线中的应用等.在衍射极限尺度下,这种亚波长结构的调控行为可有效提升电磁辐射器件的方向性、带宽,并可重构天线的工作频率、偏振态等性能.  相似文献   

15.
董丽娟  薛春华  孙勇  邓富胜  石云龙 《物理学报》2016,65(11):114207-114207
光学双稳态的阈值取决于非线性材料中的场局域程度, 场局域越强阈值越低. 而材料的损耗是影响场局域强弱的重要因素. 之前, 人们普遍认为, 增加损耗会削弱场局域, 不利于降低阈值. 本文研究了由磁单负材料和电单负材料组成的异质结构中光学双稳态现象, 发现随着损耗的增大, 其阈值可以呈现先降后升的非单调变化. 进一步研究表明, 异质结构界面处的电磁场强度随着损耗增大呈现先降后升的非单调变化, 即增加损耗也有可能增强场局域. 研究结果揭示了场局域程度与材料损耗之间的非单调依赖关系, 为设计开发非线性功能器件提供了新的思路.  相似文献   

16.
A general energy dispersion relation is developed for metamaterials having the negative-refraction (NR) property. It is shown that absorption effects are involved with NR phenomena, and the conditions under which NR occurs are discussed. Simple equations for NR are developed by using Lorentzian models.  相似文献   

17.
类特异材料半导体复合结构中的电子Tamm态   总被引:1,自引:0,他引:1       下载免费PDF全文
武执政  余坤  郭志伟  李云辉  江海涛 《物理学报》2015,64(10):107302-107302
通过选取具有特殊能带结构的半导体材料碲镉汞(Hg1-xCdxTe), 类比电磁体系得到了电子体系中的类单负材料、类双负材料等类特异材料, 然后将其组合成一维复合异质结构. 通过数值计算, 发现复合结构中存在新型电子Tamm态, 包括返向电子Tamm态和含类近零折射率材料复合结构中的电子Tamm态. 这些结果拓展了人们对电子Tamm态的认识.  相似文献   

18.
The behavior of strongly coupled Radial Photonic Crystals shells is investigated as a potential alternative to transfer electromagnetic energy wirelessly. These sub-wavelength resonant microstructures, which are based on anisotropic metamaterials, can produce efficient coupling phenomena due to their high quality factor. A configuration of selected constitutive parameters (permittivity and permeability) is analyzed in terms of its resonant characteristics. The coupling to loss ratio between two coupled resonators is calculated as a function of distance, the maximum (in excess of 300) is obtained when the shells are separated by three times their radius. Under practical conditions an 83% of maximum power transfer has been also estimated.  相似文献   

19.
The properties of the two-dimensional electromagnetic fields excited by a filamentary source located near planar and cylindrical boundaries of bodies made of metamaterials with their permittivity and permeability close to minus one are considered. The subwavelength field localization effects, the phenomena associated with the resonances of surface waves, and the nonresonant field enhancement effects are investigated.  相似文献   

20.
The two fields of topological insulators and metamaterials are independent. In this Letter, we firstly investigate the Fresnel coefficients for the reflected and refracted electromagnetic waves across the interface between topological insulators and left-handed metamaterials. Then, we derive the exact analytic expressions for Kerr and Faraday rotations. By way of multiple reflections method, we demonstrate that perfect lens with left-handed metamaterials slab and topological insulators can be designed. On the other hand, the processes of reflection and refraction are investigated in the case of topological insulator and chiral metamaterial. Then, we give the reflection and transmission coefficients of topological insulator with a chiral medium slab. Lastly, the potential applications of these results are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号