首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
For plasma enhanced and catalytic chemical vapor deposition (PECVD and Cat‐CVD) processes using small silanes as precursors, disilanyl radical (Si2H5) is a potential reactive intermediate involved in various chemical reactions. For modeling and optimization of homogeneous a‐Si:H film growth on large‐area substrates, we have investigated the kinetics and mechanisms for the thermal decomposition of Si2H5 producing smaller silicon hydrides including SiH, SiH2, SiH3, and Si2H4, and the related reverse reactions involving these species by using ab initio molecular‐orbital calculations. The results show that the lowest energy path is the production of SiH + SiH4 that proceeds via a transition state with a barrier of 33.4 kcal/mol relative to Si2H5. Additionally, the dissociation energies for breaking the Si? Si and H? SiH2 bonds were predicted to be 53.4 and 61.4 kcal/mol, respectively. To validate the predicted enthalpies of reaction, we have evaluated the enthalpies of formation for SiH, SiH2, HSiSiH2, and Si2H4(C2h) at 0 K by using the isodesmic reactions, such as 2HSiSiH2 + 1C2H61Si2H6 + 2HCCH2 and 1Si2H4(C2h) + 1C2H61Si2H6 + 1C2H4. The results of SiH (87.2 kcal/mol), SiH2 (64.9 kcal/mol), HSiSiH2 (98.0 kcal/mol), and Si2H4 (68.9 kcal/mol) agree reasonably well previous published data. Furthermore, the rate constants for the decomposition of Si2H5 and the related bimolecular reverse reactions have been predicted and tabulated for different T, P‐conditions with variational Rice–Ramsperger–Kassel–Marcus (RRKM) theory by solving the master equation. The result indicates that the formation of SiH + SiH4 product pair is most favored in the decomposition as well as in the bimolecular reactions of SiH2 + SiH3, HSiSiH2 + H2, and Si2H4(C2h) + H under T, P‐conditions typically used in PECVD and Cat‐CVD. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
Tunneling spectra of Al2O3/—SiHx, MgO/—SiHx, Al2O3/—SiDx, and Al2O3/—SiHx + NCS? are reported. Analysis of the vibrational spectra observed from isotopic substitution of the barriers obtained by deposition of a thin film of SiO onto alumina and magnesia indicate that the supported species is —SiH. The Al2O3/—SiH barrier can be used as a support for studying inorganic ions by IETS.  相似文献   

3.
Contracted CI-calculations have been performed in order to find out the mechanisms of the reactions involved when negative hydrogen ions react with silane. There were initially severe problems to find a balanced basis set to describe the reactions including correlation, particularly for the choice of diffuse functions. Finally, in agreement with earlier calculations, SiH 5 was found to be more stable than SiH4+H by 21 kcal/mol but less stable than SiH 3 and H2 by 6 kcal/mol. A barrier in the S N2 reaction SiH4+H SiH5 has previously been predicted by calculations, which was not confirmed by the present CI calculations. The lack of a barrier is in agreement with experimental evidence. Contrary to what is expected from the orbital symmetry rules, which predict two allowed pathways, SiH 5 does not dissociate easily to the lower lying SiH 3 + H2. A barrier of 57 kcal/mol, which was very difficult to locate, was finally found. In order to explain the experimental observation of SiH 3 and the lack of observation of SiH 5 a different mechanism for the reaction SiH4+H SiH 3 + H2 is suggested. For a direct proton transfer a barrier of less than 10 kcal/mol is predicted.  相似文献   

4.
Optical emission spectroscopy in the visible and near UV of a silane plasma was performed in a low pressure hot cathode glow discharge bounded into a magnetized multipolar wall. Emissions from Si, Si+, SiH, SiH+ and H are shown to originate from the dissociative excitation of silane molecules by electron impact. The absolute cross sections for the various photoemissive processes were measured in the 17–68 eV range. The relevance of optical emission spectroscopy to silane plasma diagnostics is discussed.  相似文献   

5.
Hydrogen atoms and SiHx (x = 1–3) radicals coexist during the chemical vapor deposition (CVD) of hydrogenated amorphous silicon (a‐Si:H) thin films for Si‐solar cell fabrication, a technology necessitated recently by the need for energy and material conservation. The kinetics and mechanisms for H‐atom reactions with SiHx radicals and the thermal decomposition of their intermediates have been investigated by using a high high‐level ab initio molecular‐orbital CCSD (Coupled Cluster with Single and Double)(T)/CBS (complete basis set extrapolation) method. These reactions occurring primarily by association producing excited intermediates, 1SiH2, 3SiH2, SiH3, and SiH4, with no intrinsic barriers were computed to have 75.6, 55.0, 68.5, and 90.2 kcal/mol association energies for x = 1–3, respectively, based on the computed heats of formation of these radicals. The excited intermediates can further fragment by H2 elimination with 62.5, 44.3, 47.5, and 56.7 kcal/mol barriers giving 1Si, 3Si, SiH, and 1SiH2 from the above respective intermediates. The predicted heats of reaction and enthalpies of formation of the radicals at 0 K, including the latter evaluated by the isodesmic reactions, SiHx + CH4 = SiH4 + CHx, are in good agreement with available experimental data within reported errors. Furthermore, the rate constants for the forward and unimolecular reactions have been predicted with tunneling corrections using transition state theory (for direct abstraction) and variational Rice–Ramsperger–Kassel–Marcus theory (for association/decomposition) by solving the master equation covering the P,T‐conditions commonly employed used in industrial CVD processes. The predicted results compare well experimental and/or computational data available in the literature. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
Stationary and non-stationary etching of Si(100) surfaces by hydrogen were studied between 200 K and 800 K using direct product detection and thermal desorption spectroscopy. Silane was the only etch product observed. The rates of silane SiDnH4−n isotopes measured during etching D-saturated Si(100) surfaces with gaseous H illustrate that the etch reaction proceeds between surface silyl and incoming H in a direct (Eley–Rideal or hot-atom) reaction step: H(g)+SiD3(ad)→SiD3H(g). Non-stationary etching via silane desorption occurs through disproportionation between surface dihydride and silyl groups, SiH2(ad)+SiH3(ad)→SiH4(g).  相似文献   

7.
This paper reports on a mass spectrometric study of the neutral and ionic species in a low-pressure rf discharge sustained in a C2H4-SiH4 mixture diluted in helium. It is shown that C2H4 is readily decomposed into C2H 2 * and C2H3. The formation of secondary products such as C4H2, C4H4, and C4H6 is observed and confirms the presence of C2H2 in the discharge. Methylsilane (CH3SiH3) and ethylsilane (C2H5SiH3) are also synthesized in this discharge. It is also observed that the major ions C2H 4 + , C3H 5 + , SiH 3 + , Si2H 4 + , SiCH 3 + , SiC2H 3 + , and SiC2H 7 + are not representative of the direct ionization of neutral species. Their formation is thus interpreted on the basis of ion-molecule reactions.  相似文献   

8.
The homogeneous gas-phase decomposition kinetics of silane has been investigated using the single-pulse shock tube comparative rate technique (T = 1035–1184?K, Ptotal ≈? 4000 Torr). The initial reaction of the decomposition SiH4 \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm SiH}_{\rm 4} \mathop \to \limits^1 {\rm SiH}_{\rm 2} + {\rm H}_{\rm 2} $\end{document} SiH2 + H2 is a unimolecular process in its pressure fall-off regime with experimental Arrhenius parameters of logk1 (sec?1) = 13.33 ± 0.28–52,700 ± 1400/2.303RT. The decomposition has also been studied at lower temperatures by conventional methods. The results confirm the total pressure effect, indicate a small but not negligible extent of induced reaction, and show that the decomposition is first order in silane at constant total pressures. RRKM-pressure fall-off calculations for four different transition-state models are reported, and good agreement with all the data is obtained with a model whose high-pressure parameters are logA1 (sec?1) = 15.5, E1(∞) = 56.9 kcal, and ΔE0(1) = 55.9 kcal. The mechanism of the decomposition is discussed, and it is concluded that hydrogen atoms are not involved. It is further suggested that silylene in the pure silane pyrolysis ultimately reacts with itself to give hydrogen: 2SiH2 → (Si2H4)* → (SiH3SiH)* → Si2H2 + H2. The mechanism of H ? D exchange absorbed in the pyrolysis of SiD4-hydrocarbon systems is also discussed.  相似文献   

9.
The gas phase ion chemistry of silane/hydrogen sulfide and germane/hydrogen sulfide mixtures was studied by ion trap mass spectrometry (ITMS), in both positive and negative ionization mode. In positive ionization, formation of X/S (X = Si, Ge) mixed ions mainly takes place via reactions of silane or germane ions with H2S, through condensation followed by dehydrogenation. This is particularly evident in the system with silane. On the other side, reactions of HnS2+ ions with XH4 (X = Si, Ge) invariably lead to formation of a single X? S bond. In negative ionization, a more limited number of mixed ion species is detected, but their overall abundance reaches appreciable values, especially in the SiH4/H2S system. Present results clearly indicate that ion processes play an important role in formation and growth of clusters eventually leading to deposition of amorphous solids in chemical vapor deposition (CVD) processes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Zusammenfassung Es werden molekulare Struktur, Energie des Grundzustandes, Bindungsabstände, Bindungsenergie, Ionisierungsenergie und Protonenaffinität der Siliziumwasserstoffverbindungen SiH n , SiH n + und SiHn (n=3, 4 oder 5) nach der Einzentrenmethode berechnet.
OCE-calculations on some silicon hydrides of the type SiH n , SiH n + and SiH n
OCE-Calculations are reported for molecular structures, ground state energies, bond distances, binding energies, ionization potentials and proton affinities of the silicon hydrides SiH n , SiH n + and SiH n (n=3, 4 or 5).

Résumé Calcul par la méthode monocentrique de la structure moléculaire, de l'énergie de l'état fondamental, des longueurs de liaison, des énergies de liaison, des potentiels d'ionisation et des affinités protoniques pour les hydrures de silicium SiH n , SiH n + et SiH n (n=3, 4 ou 5).
  相似文献   

11.
The decomposition kinetics of disilane with added butadiene, trisilane both neat and with added butadiene, trimethylsilane or H2, and normal and iso-tetrasilane both neat and in the presence of added butadiene are reported. Arrhenius parameters of the primary dissociation reactions are determined: A-factors suggest that polysilane decompositions (1) have similar intrinsic activation entropies (ΔS? ≈? 6.2 ± 5 e.u.) and (2) have activation energies which increase with increasing reaction endothermicities. Relative trapping efficiencies of SiH4, Si2H6, Si3H8, C4H6, Me3SiH, and H2 toward SiH2 and SiH3SiH are also determined. Other results include the heat of formation of silylsilylene, ΔH ° f (SiH3SiH) = 75.3 Kcal/mol, and the activation energy for 1,1-H2 elimination from disilane (EH2 = 57.8 kcal/mol).  相似文献   

12.
Methylation of SiH4, MeSiH3, Si2H6, GeH4 and B2H6, but not of PH3 or AsH3, was observed during reaction (230–324°C) with GaMe3. The products from the SiH4 and Si2H6 reactions were MeSiH3, Me2SiH2 and Me3SiH. The GeH4-derived products were similar, with Me4Ge also being formed. The only methylated products from B2H6 was BMe3. The silane reactions were surface-catalyzed (presumably by surface hydroxyl groups), while those of GeH4 and B2H6 may have occurred via gas-phase free radical processes.  相似文献   

13.
Particle formation from silane pyrolysis was studied in a shock tube. Molecular and atomic species (SiH2, SiH, Si2, H2, Si, H) were identified by thermal induced fluorescence at temperatures exceeding 3000 K. At temperatures below 2500 K, silicon cluster formation was detected by optical extinction measurements.  相似文献   

14.
Photochemically activated [Mo(CO)6] and [Mo(CO)44-nbd)] have been demonstrated to be very effective catalysts for hydrosilylation of norbornadiene (nbd) by tertiary (Et3SiH, Cl3SiH) and secondary (Et2SiH2 and Ph2SiH2) silanes to give 5-silyl-2-norbornene, which under the same reaction conditions transform in ring-opening metathesis polymerization (ROMP) to unsaturated polymers and to a double hydrosilylation product, 2,6-bis(silyl)norbornane. The yield of a particular reaction depends very strongly on the kind of silane involved. The reaction products were identified by means of chromatography (GC–MS) and 1H and 13C NMR spectroscopy. In photochemical reaction of [Mo(CO)44-nbd)] and Ph2SiH2 in cyclohexane-d12, η2-coordination of the SiH bond to the molybdenum atom is supported by 1H NMR spectroscopy due to the detection of two equal-intensity doublets with 2JHH = 5.4 Hz at δ 6.12 and −5.86 ppm.  相似文献   

15.
A molecular beam mass spectrometry system for in situ measurement of the concentration of gas phase species including radicals impinging on a substrate during thermal plasma chemical vapor deposition (TPCVD) has been designed and constructed. Dynamically controlled substrate temperature was achieved using a variable thermal contact resistance method via a backside flow of an argon/helium mixture. A high quality molecular beam with beamtobackground signal greater than 20 was obtained under film growth conditions by sampling through a small nozzle (75 m) in the center of the substrate. Mass discrimination effects were accounted for in order to quantify the species measurements. We demonstrate that this system has a minimum detection limit of under 100 ppb. Quantitative measurements of hydrocarbon species (H, H2, C, CH3, CH4, C2H2, C2H4) using Ar/H2/CH4 mixtures and silicon species (Si, SiH, SiH2, SiCl, SiCl2, Cl, HCl) using Ar/H2/SiCl4 mixtures were obtained under thermal plasma chemical vapor deposition conditions.  相似文献   

16.
Decacarbonyldimanganese(O) complex, Mn2(CO)10, has been evaluated as a catalyst for hydrosilylation reactions of 1-hexene with tertiary silanes, Et3SiH and (EtO)3SiH. The reaction of Et3SiH appears to be first order with respect to the catalyst, to the hexene and to the silane, although catalyst deactivation occurs when relatively high silane concentrations are used. The reaction rate is slightly affected by varying the type of the silane used. The rate of disappearance of the tertiary silane is consistent with that of the 1-hexene, which means that the catalyst is selective to hydrosilylation reactions. This was confirmed by following the rates of disappearance of Si-H and CC IR bands at 2210, 2100 and 1650 cm−1 for (EtO)3SiH, Et3SiH and 1-hexene respectively. A comparison of the behaviour of Mn2(CO)10 with that of Co2(CO)8 is reported here, together with a suggested mechanism for the manganese catalyst.  相似文献   

17.
Photolysis of the norbornadiene (nbd) complex [W(CO)44-nbd)] (1) creates a coordinatively unsaturated d6 species which interacts with the Si-H bond of tertiary and secondary silanes (Cl3SiH, Et3SiH, Et2SiH2, Ph2SiH2) to yield hydride complexes of varying stability. In reaction of complex 1 with Cl3SiH, oxidative addition of the Si-H bond to the tungsten(0) center gives the seven-coordinate tungsten(II) complex [WH(SiCl3)(CO)34-nbd)], which has been fully characterized by NMR spectroscopic methods (1H, 13C{1H}, 2D 1H-1H COSY, 2D 13C-1H HMQC and 29Si{1H}). Reaction of 1 with Et3SiH leads to the hydrosilylation of the η4-nbd ligand to selectively yield endo-2-triethylsilylnorbornene (nbeSiEt3). The latter silicon-substituted norbornene gives the unstable pentacarbonyl complex [W(CO)52-nbeSiEt3)], whose conversion leads to the initiation of ring-opening metathesis polymerization (ROMP). Reaction of secondary silanes (Et2SiH2 and Ph2SiH2) with 1 leads to the hydrosilylation and hydrogenation of nbd and the formation of bis(silyl)norbornane and silylnorbornane as the major products. In reaction of 1 and Et2SiH2, the intermediate dihydride complex [WH(μ-H-SiEt2)(CO)x4-nbd)] was detected by 1H and 13C NMR spectroscopy. As one of the products formed in photochemical reaction of W(CO)6 with Ph2SiH2, the dinuclear complex [{W(μ-η2-H-SiPh2)(CO)4}2] was identified by NMR spectroscopic methods.  相似文献   

18.
The effect of experimental conditions on the magnitude and uniformity of the deposition rate of epitaxial silicon obtained by chemical deposition from the gas phase in the SiCl4-H2, SiHCl3-H2, and SiH4-H2 systems (in the temperature ranges from 1300 to 1520 K for the chloride and 1270 to 1370 K for the silane systems) has been examined. Chloride and silane processes are compared.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1217–1222, July, 1995.  相似文献   

19.
Summary Hydrogen has been analysed quantitatively in a-Si1–xGex:H alloys by SIMS with H variation from 1×1019 –1.3×1022 atoms/cm3 and x between 0 and 1. To quantify the absolute H concentration, SIMS measurements have been calibrated with nuclear reaction analysis, which exhibits excellent agreement with SIMS data for the total range of H and Ge variance. From abundances of the molecule ions SiH+ and GeH+ the fractions H bound to Si or Ge can be discerned and are in good accordance with quantification of SiH and GeH stretching modes in IR spectroscopic measurements. Preferential attachment of H to Si compared to Ge by a factor of 3.5 is determined for glow discharge a-SiGe:H samples; during annealing up to 900 K only small changes of this factor are observed.  相似文献   

20.
The adsorption and reactions of the SiHx (x = 0–4) on Titanium dioxide (TiO2) anatase (101) and rutile (110) surfaces have been studied by using periodic density functional theory in conjunction with the projected augmented wave approach. It is found that SiHx (x = 0–4) can form the monodentate, bidentate, or tridentate adsorbates, depending on the value of x. H coadsorption is found to reduce the stability of SiHx adsorption. Hydrogen migration on the TiO2 surfaces is also discussed for elucidation of the SiHx decomposition mechanism. Comparing adsorption energies, energy barriers, and potential energy profiles on the two TiO2 surfaces, the SiHx decomposition can occur more readily on the rutile (110) surface than on the anatase (101) surface. The results may be used for kinetic simulation of Si thin‐film deposition and quantum dot preparation on titania by chemical vapor deposition (CVD), plasma enhanced CVD, or catalytically enhanced CVD. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号