首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Micromachining techniques were applied to construct biosensor systems. The micromachined biosensors have small size, low production cost, and good reproducibility. We made some detection units for flow injection analysis (FIA). An electrochemical flow cell was fabricated, and both the enzyme immobilized column and electrochemical detector were integrated onto the same chip. A chemiluminescence detector was also fabricated and applied to the determination of glucose and lactic acid contained in human serum and urine.  相似文献   

2.
Lv Y  Zhang Z  Chen F 《Talanta》2003,59(3):571-576
A chemiluminescence (CL) biosensor on a chip coupled to microfluidic system is described in this paper. The CL biosensor measured 25×45×5 mm in dimension, was readily produced in analytical laboratory. Glucose oxidase (GOD) was immobilized onto controlled-pore glass (CPG) via glutaraldehyde activation and packed into a reservoir. The analytical reagents, including luminol and ferricyanide, were electrostatically co-immobilized on an anion-exchange resin. The most characteristic of the biosensor was to introduce the air as the carrier flow in stead of the common solution carrier for the first. The glucose was sensed by the CL reaction between hydrogen peroxide produced from the enzymatic reaction and CL reagents, which were released from the anion-exchange resin. The proposed method has been successfully applied to the determination of glucose in human serum. The linear range of the glucose concentration was 1.1-110 mM and the detection limit was 0.1 mM (3σ).  相似文献   

3.
Different integrated systems with a bi-enzymatic biosensor, working with two different methods for ethanol detection—flow injection analysis (FIA) or sequential injection analysis (SIA)—were developed and applied for ethanol extracted from gasohol mixtures, as well as for samples of alcoholic beverages and fermentation medium. A detection range of 0.05–1.5 g ethanol/l, with a correlation coefficient of 0.9909, has been reached when using FIA system, working with only one microreactor packed with immobilized alcohol oxidase and injecting free horseradish peroxidase. When using both enzymes, immobilized separately in two microreactors, the detection ranges obtained varied from 0.001 to 0.066 g ethanol/l, without on-line dilution to 0.010–0.047 g ethanol/l when a 1:7,000 dilution ratio was employed, reaching correlation coefficients of 0.9897 and 0.9992, respectively. For the integrated biosensor SIA system with the stop–flow technique, the linear range was 0.005–0.04 g/l, with a correlation coefficient of 0.9922.  相似文献   

4.
An amperometric glucose biosensor was developed based on the immobilization of glucose oxidase in the organically modified silicate (ormosil)-polyvinyl acetate (PVA) matrix onto a Prussian Blue (PB)-modified glassy carbon electrode. A higher stability PB-modified electrode was prepared by the electrochemical deposition of FeCl3, K3[Fe(CN)6] and ethylenediamine tetraacetic acid (EDTA) under cyclic voltammetric (CV) conditions. The effects of the potential range of CV conditions, electrolyte cations, applied potential, pH, temperature and co-existing substances were investigated. The detection limit of the glucose biosensor was 8.1 μmol·L−1 (S/N = 3) with a linear range from 20 μmol·L−1 to 2 mmol·L−1 (R = 0.9965). The biosensor presented a fast response and good selectivity. Additionally, excellent reproducibility and stability of the biosensor were observed. Supported by the National High Technical Development Project (863 project) Foundation (Grant No. 2006AA09Z160) and the National Natural Science Foundation of China (Grant No. 20775064)  相似文献   

5.
流动注射化学发光植物组织传感器测定草酸盐   总被引:3,自引:0,他引:3  
草酸是尿道结石主要成因之一 .统计结果表明 ,90 %以上结石均含草酸钙 .回肠病、口角性肠胃炎及脂肪吸收不良均可引起尿液中草酸的增加 .草酸盐的测定在临床上具有重要意义 .微量草酸测定的传统方法是变色酸比色法或偶氮化合物比色法[1 ] .测定草酸盐的方法还有原子吸收光谱法[2 ] 、高效液相色谱法[3] 、离子色谱法[4] 、光度法[5] 和草酸氧化酶法[6] 等 .这些方法或操作复杂、耗时 ,或灵敏度低 ,使其应用受到限制 .本文提出一种测定草酸盐的新方法 ,其原理为草酸 +O2草酸氧化酶 CO2 +H2 O2 ,Luminol+H2 O2 hv  将含有草…  相似文献   

6.
A flow injection analysis (FIA) biosensor system was developed for the determination of the artificial sweetener aspartame (l-aspartyl-l-phenylalanine methyl ester). The system consisted of an enzyme column of pronase immobilized on activated arylamine glass beads and al-amino acid oxidase electrode connected in series. The dipeptide bond of aspartame was cleaved by immobilized pronase to release phenylalanine, which was in turn monitored by the enzyme electrode that usedl-amino acid oxidase, immobilized on a preactivated nylon membrane in combination with an amperometric electrode (platinum vs silver/silver chloride, 700 mV). The response of the FIA biosensor was linear up to 1 mM aspartame with a lower detection limit of 25 μM and had good reproducibility (rsd 0.3%). The FIA biosensor was stable for at least 30 h of continuous use atT r .Each assay takes 4 min giving a sample throughput of 15 h?1 When applied to aspartame in dietary food products the results obtained agreed well with those reported by the product manufacturers.  相似文献   

7.
《Analytical letters》2012,45(19-20):1949-1961
Abstract

The compatability of a solid state peroxyoxalate chemiluminescence detector for hydrogen peroxide with an immobilized oxidase reactor is investigated. As a model system glucose oxidase immobilized by electrostatic forces on an ion-exchanger or chemically bonded to glass beads were chosen. The former support is less suitable for immobilization of oxydases due to strong retention of hydrogenperoxide on the ion exchanger.

The relatively little flow dependence of these systems renders them suitable for low-cost manual sample injection monitors as well as in a flow injection analyses (FIA) mode with low-cost pumping systems. The system was operated with 80% acetonitrile water solutions. A detection limit of 8 × 10?7M of glucose was achieved in directly injected samples.

Enzymes more sensitive to organic solvents can be operated with pure water and adjustment for optimal chemiluminescence condition is achieved with a make-up flow prior to detection. A detection limit of 5 × 10?8M glucose is achieved under these conditions. The feasability of this approach to other oxidase based monitors and to detection in liquid chromatography is discussed.  相似文献   

8.
A new, highly sensitive, fast responding and stable potentiometric biosensor for creatinine determination is developed. The biosensor is based on an ammonium ion-selective electrode. Creatinine deiminase (EC 3.5.4.21) is chemically immobilized on the surface of the polymeric ion-sensitive membrane in the form of monomolecular layer using a simple, one-step carbodiimide covalent attachment method. The resulting enzyme electrodes are useful for measurement under flow injection analysis (FIA) conditions. The biosensors exhibit excellent operational and storage stability. The enzyme electrodes retain over 70% of initial sensitivity after ten weeks of work under FIA conditions. The storage stability at 4 °C is longer than half a year without loss of sensitivity. Under optimized conditions near 30 samples per hour can be analyzed and the determination range (0.02-20.0 mmol l−1) fully covers creatinine concentrations important from clinical and biomedical point of view. The simple biosensor/FIA system has been successfully used for determination of creatinine in urine, serum and posthemodialysate samples.  相似文献   

9.
We report a novel bienzyme biosensor based on the assembly of the glucose oxidase (GOD) and horseradish peroxidase (HRP) onto the gold nanoparticles encapsulated mesoporous silica SBA-15 composite (AuNPs-SBA-15). Electrochemical behavior of the bienzyme bioconjugates biosensor is studied by cyclic voltammetry and electrochemical impedance spectroscopy. The results indicate that the presence of mesoporous AuNPs-SBA-15 greatly enhanced the protein loadings, accelerated interfacial electron transfer of HRP and the electroconducting surface, resulting in the realization of direct electrochemistry of HRP. Owing to the electrocatalytic effect of AuNPs-SBA-15 composite, the biosensor exhibits a sensitive response to H2O2 generated from enzymatic reactions. Thus the bienzyme biosensor could be used for the detection of glucose without the addition of any mediator. The detection limit of glucose was 0.5 μM with a linear range from 1 to 48 μM. Supported by the National Natural Science Foundation of China (Grant Nos. 20635020 & 90606016)  相似文献   

10.
Bienzymatic biosensor for the determination of glucose by flow injection chemiluminescence (CL) detection was proposed. Hybrids of gold nanoparticles (GNPs) and chitosan were chosen as the immobilization matrix of glucose oxidase (GOD) and horseradish peroxidase (HRP) to fabricate the biosensors with silane-pretreated glass microbeads. After the enzyme catalyzing oxidation of glucose in GOD biosensor, the produced H2O2 flowed into HRP biosensor to react with luminol. The doped GNPs in chitosan were found to enhance the classical CL reaction of luminol-H2O2-HRP. The CL enhancement was investigated in detail by CL and UV-visible spectrum. Under the optimized experimental conditions, glucose could be determined in a linear range from 0.01 to 6.0 mmol/L with a detection limit of 5.0 μmol/L at 3σ. The accuracy of the proposed method was examined by detecting the glucose level in four clinical serum samples from hospital. The proposed method provides a new alternative to determine glucose. Supported by the Natural Science Foundation of Shandong Province (Grant No. Q2007B03), the Doctoral Fund of Qingdao University of Science and Technology (Grant No. 0022141), and the National Natural Science Foundation of China (Grant No. 20775038)  相似文献   

11.
A novel glucose oxidase (GOD) biosensor was fabricated with a protic ionic liquid (PIL) N-ethylimidazolium trifluoromethanesulfonate ([EIm][TfO]) as the modifier of a carbon electrode. Due to the excellent conductivity and the conformational changes of the microenvironment around the GOD, the electrochemical and biocatalytic properties of GOD immobilized on the PIL-based electrode were dramatically enhanced. A couple of well-defined redox peaks could be observed, with a formal potential of −0.476 V. The GOD biosensor presented good catalytic activity to the oxidation of glucose in oxygen-saturated phosphate buffer solutions. The cathodic peak currents of GOD decreased along with glucose concentrations. A linear response in the range 0.005–2.8 mM was obtained with a detection limit of 2.5 μM. The sensitivity and the apparent Michaelis–Menten constant (K m) were estimated to be 14.96 μA mM−1 and 1.53 μM, respectively. In addition, the biosensor remained stable over 30 days, indicating its good chemical and mechanical stability. The glucose content of several serum samples was determined by using the newly developed biosensor, and the results were in good agreement with those obtained by hospital measurements. All results suggested that PILs were a good media for supporting biocatalytic processes on the bioelectrode.  相似文献   

12.
Horseradish peroxidase (HRP) and glucose oxidase (GOD) bienzyme biosensor was constructed by in-situ formation of the organic-inorganic biocomposite film based on the one-step electrodeposition and covalent-coupled sol-gel process. The electrodeposition was performed in the solution containing functional inorganic precursor possessing the epoxy groups, γ-glycidoxypropyltrimethoxysiloxane (GPTMS), a biopolymer chitosan (CS), HRP and GOD. The covalent-coupled sol-gel process was formed by self-hydrolysis and self-condensation of GPTMS, followed by in-situ covalent cross-linking of CS, HRP and GOD through covalent reaction between amino groups and epoxy groups. The developed bienzyme biosensor presented high stability in acidic solution owing to the covalent-coupled organic-inorganic hybridization. Compared with the non-hybrid HRP-GOD/CS/Au electrode, the bienzyme biosensor of HRP-GOD/GPTMS/CS/Au showed improved sensitivity and a wider linear range for the determination of glucose. The linear response of the developed HRP-GOD/GPTMS/CS/Au biosensor for the determination of glucose ranged from 1 to 351 μmol/L with a detection limit of 0.3 μmol/L.  相似文献   

13.
A novel chemiluminescence(CL) flow system for sulfite is described based on electrostatically immobilized luminol on an anion exchange column. Sulfite is detected by the CL reaction with luminol bleeding from the column by hydrolysis. The calibration graph is linear in the range 3 × 10–7 to 1 × 10–5 mol/L, and the detection limit is 1 × 10–7 mol/L. Interfering metal ions co-existing in sample solutions could be effectively eliminated on-line by an upstream cation exchanger. A complete analysis could be performed in 1 min with a relative standard deviation of less than 5%. The system could be reused for over 50 h and has been applied successfully to the determination of sulfur dioxide in air. Received: 21 October 1997 / Revised: 23 February 1998 / Accepted: 26 February 1998  相似文献   

14.
A continuous flow-through solid phase spectrophotometric system was developed for the determination of ascorbic acid based on the measurement of its intrinsic absorbance in the UV region when retained on a 1 mm Sephadex QAE A-25 anion exchanger gel layer which is placed into an appropriate quartz flow-through cell, the absorbance exhibited by this solid phase being monitored at 267 nm. A monochannel manifold was used, the sample (300, 600 or 1000 μL) being injected into the carrier solution (acetate buffer). This solution also elutes the analyte after developing the analytical signal, and regenerates the resin layer which, therefore, remains ready for the next sample. The linear dynamic range and other analytical parameters vary according to the sample volume injected. Three calibration lines were established for 300, 600 and 1000 μL sample volume, which ranged from 1.0 to 20.0, 0.5 to 10.0 and 0.2 to 6.0 μg mL–1, respectively. The detection limits were 0.04 (300 μL), 0.03 (600 μL) and 0.02 μg mL–1 (1000 μL), the sampling rates 28, 24 and 21 h–1, and the RSDs (n = 10) 0.87%, 1.08% and 0.90%, respectively. The amount of ascorbic acid in various samples (pharmaceuticals, sweets and urine) were successfully determined with this method. Received: 28 April 1998 / Revised: 3 June 1998 / Accepted: 30 June 1998  相似文献   

15.
A continuous flow-through solid phase spectrophotometric system was developed for the determination of ascorbic acid based on the measurement of its intrinsic absorbance in the UV region when retained on a 1 mm Sephadex QAE A-25 anion exchanger gel layer which is placed into an appropriate quartz flow-through cell, the absorbance exhibited by this solid phase being monitored at 267 nm. A monochannel manifold was used, the sample (300, 600 or 1000 μL) being injected into the carrier solution (acetate buffer). This solution also elutes the analyte after developing the analytical signal, and regenerates the resin layer which, therefore, remains ready for the next sample. The linear dynamic range and other analytical parameters vary according to the sample volume injected. Three calibration lines were established for 300, 600 and 1000 μL sample volume, which ranged from 1.0 to 20.0, 0.5 to 10.0 and 0.2 to 6.0 μg mL–1, respectively. The detection limits were 0.04 (300 μL), 0.03 (600 μL) and 0.02 μg mL–1 (1000 μL), the sampling rates 28, 24 and 21 h–1, and the RSDs (n = 10) 0.87%, 1.08% and 0.90%, respectively. The amount of ascorbic acid in various samples (pharmaceuticals, sweets and urine) were successfully determined with this method. Received: 28 April 1998 / Revised: 3 June 1998 / Accepted: 30 June 1998  相似文献   

16.
A new amperometric biosensor based on urate oxidase-peroxidase coupled enzyme system for the specific and selective determination of uric acid in urine was developed. Commercially available urate oxidase and peroxidase were immobilized with gelatin by using glutaraldehyde and fixed on a pretreated teflon membrane. The method is based on generation of H2O2 from urine uric acid by urate oxidase and its consuming by peroxidase and then measurement of the decreasing of dissolved oxygen concentration by the biosensor. The biosensor response depends linearly on uric acid concentration between 0.1 and 0.5 μM. In the optimization studies of the biosensor, phosphate buffer (pH 7.5; 50 mM) and 35 °C were obtained as the optimum working conditions. In addition, the most suitable enzyme activities were found as 64.9×10−3 U cm−2 for urate oxidase and 512.7 U cm−2 for peroxidase. And also some characteristic studies of the biosensor such as reproducibility, substrate specificity and storage stability were carried out.  相似文献   

17.
本文介绍了一种新型的酶传感器, 首次以具有一定规整结构的β沸石固定酶, 以7, 7', 8, 8'-四氰基醌二甲烷作为电子传递媒介体,研制成葡萄糖传感器, 运用傅利叶变换红外光谱研究了β沸石与葡萄糖氧化酶之间的相互作用, 通过载体孔径分布和等电点的测定, 研究了载体的孔结构及表面酸性质对酶吸附的影响规律, 并对电极的制备条件和响应性能进行了优化。  相似文献   

18.
A biosensor for glucose utilizing kinetics of glucose oxidase (EC 1.1.3.4.) was developed. The enzyme was immobilized on polyaniline by covalent bonding, using glutaraldehyde as a bifunctional agent. The system showed a linear response up to 2.2 mM of glucose with a response time of 2.5–4.0 min. In addition, the immobilized enzyme had a higher activity between pH 6.5 and 7.5. The system retained 50% of its activity after 30 d of daily use. The optical absorption spectra of the polyaniline/glucose oxidase electrode after glucose had been added to the buffer solution showed that the absorption band around 800 nm had changed considerably when glucose was allowed to react with the electrode. This optical variation makes polyaniline a very promising polymer for use as a support in optical sensor for clinical application.  相似文献   

19.
Streptomyces SP.N 14, isolated from soil samples, produced extracellular L-glutamate oxidase (GOD) in liquid culture. After a two-step ammonium sulfate purification and dextran G-150 chromatography, the specific activity was reached at 28.2 U/mg. The partial purified enzyme and horseradish peroxidase (HRP) were covalently coupled to alkylamine controlled pore glass (CPG) by means of glutaraldehyde. About 200–300 U/g of immobilized GOD and 300–400 U/g of immobilized HRP were obtained. The immobilized enzymes were packed into a teflon tube and used in flow injection analysis (FIA) for glutamate in broth. A good linear range was observed for this immobilized enzyme system at 0.1–2.0 mM, and the precision was 2.8% (n = 25). More than 80 samples were measured within an hour. One enzyme column with about 4 U of immobilized GOD and 5 U of immobilized HRP, applied for 50 assays/d, has been used for more than 50 d. The concentration of L-glutamate remaining lower than 2.0 mM, the determination of glutamate in this system was not affected by pH and temperature within the range of 6.0–7.0 and 25–35‡C, respectively. The system was applied to determine L-glutamate in broth samples during L-glutamate fermentation, and good correlation was achieved between results obtained with the system and with the Warburg’s method.  相似文献   

20.
An optical glucose biosensor using a swim bladder membrane as an enzyme immobilization platform and an oxygen-sensitive membrane as an optical oxygen transducer has been developed. During the enzymatic reaction, glucose is oxidized by glucose oxidase with a concomitant consumption of dissolved oxygen resulting in an increase in the fluorescence intensity of the optical oxygen transducer. The fluorescence intensity is directly related to the glucose concentration. The effects of pH, temperature, buffer concentration, and selectivity have been studied in detail. The immobilized enzyme retained 80% of its initial activity after being kept for more than 10 months at 4°C. The glucose biosensor has been successfully applied to the determination of glucose content in human blood serum and urine samples. Martin M.F. Choi was on sabbatical leave at The University of North Carolina at Chapel Hill from July 2004 to July 2005.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号