首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Over the past two decades, significant advances have been made towards developing chemically catalyzed asymmetric cyanohydrin syntheses. Preparations that were classically highly substrate specific, often using stoichiometric quantities of reagents, have been revolutionized by a new generation of catalysts. Methods currently available rival, and in many cases surpass, enzymatic procedures in terms of synthetic utility, generic applicability, and enantioselectivity. Such protocols are increasingly finding application in the syntheses of both biologically active natural products and therapeutically important synthetic compounds.  相似文献   

3.
Aluminum phthalocyanine (AlPc) in the presence of Ph3PO acts as a highly effective catalyst for cyanosilylation of various aldehydes to the corresponding cyanohydrin trimethylsilyl ethers. The reaction proceeds smoothly with 5 mol% catalyst loading at room temperature, giving up to 96% yield. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
5.
6.
7.
Two vanadyl salen complexes having peripheral styryl substituents have been reacted with 1-methyl-3-(3-mercaptopropyl)-imidazolium chloride using azoisobutyronitrile as radical initiator. The resulting compounds contain at the same time a vanadyl salen complex and one imidazolium cation. In agreement with the expectations in view of their structure, these compounds were insoluble in conventional organic solvents, but completely miscible in imidazolium ionic liquids. These vanadyl salen complexes bonded to an imidazolium cation are highly active and reusable catalysts for the cyanosilylation of aldehydes. Moderate enantiomeric excesses were obtained using the chiral version of this complex.  相似文献   

8.
9.
10.
A number of polydentate ligands based on enantiomerically pure binaphthol have been synthesized. The ligand complexes with titanium isopropoxide were used as catalysts for the asymmetric addition of trimethylsilyl cyanide to benzaldehyde. A fragment with axial chirality is responsible for the configuration of O-trimethylsilyl cyanohydrin product. In the case of the optimum ligand based on (R)-binaphthol and (S)-leucinol, an enantiomeric excess of 86% and quantitative yield were achieved in 4 h. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1946–1953, September, 2008.  相似文献   

11.
Double-activation catalysis promises high catalytic efficiency in the enantioselective cyanosilylation of ketones through the combined use of a Lewis acid and a Lewis base. Catalyst systems composed of a chiral salen-Al complex and an N-oxide have high catalytic turnovers (200 for aromatic ketones, 1000 for aliphatic ones). With these catalysts, a wide range of aliphatic and aromatic ketones were converted under mild conditions into tertiary cyanohydrin O-TMS ethers in excellent yields and with high enantioselectivities (94% ee for aromatic ketones, 90% ee for aliphatic ones). Preliminary mechanistic studies revealed that the salen-Al complex played the role of a Lewis acid to activate the ketone and the N-oxide that of a Lewis base to activate TMSCN; that is, double activation.  相似文献   

12.
13.
Cu(ClO4)2·6H2O has been found to be an efficient catalyst for cyanosilylation reaction of aldehydes in THF at room temperature with low catalytic loading (1.0 mol%) in short reaction time (mostly within 10 min). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
15.
16.
Full investigation of cyanation of aldehydes, ketones, aldimines and ketimines with trimethylsilyl cyanide (TMSCN) or ethyl cyanoformate (CNCOOEt) as the cyanide source has been accomplished by employing an in situ generated catalyst from cinchona alkaloid, tetraisopropyl titanate [Ti(OiPr)4] and an achiral modified biphenol. With TMSCN as the cyanide source, good to excellent results have been achieved for the Strecker reaction of N‐Ts (Ts=p‐toluenesulfonyl) aldimines and ketimines (up to >99 % yield and >99 % ee) as well as for the cyanation of ketones (up to 99 % yield and 98 % ee). By using CNCOOEt as the alternative cyanide source, cyanation of aldehyde was accomplished and various enantioenriched cyanohydrin carbonates were prepared in up to 99 % yield and 96 % ee. Noteworthy, CNCOOEt was successfully employed for the first time in the asymmetric Strecker reaction of aldimines and ketimines, affording various α‐amino nitriles with excellent yields and ee values (up to >99 % yield and >99 % ee). The merits of current protocol involved facile availability of ligand components, operational simplicity and mild reaction conditions, which made it convenient to prepare synthetically important chiral cyanohydrins and α‐amino nitriles. Furthermore, control experiments and NMR analyses were performed to shed light on the catalyst structure. It is indicated that all the hydroxyl groups in cinchona alkaloid and biphenol complex with TiIV, forming the catalyst with the structure of (biphenoxide)Ti(OR*)(OiPr). The absolute configuration adopted by biphenol 4 m in the catalyst was identified as S configuration according to the evidence from control experiments and NMR analyses. Moreover, the roles of the protonic additive (iPrOH) and the tertiary amine in the cinchona alkaloid were studied in detail, and the real cyanide reagent in the catalytic cycle was found to be hydrogen cyanide (HCN). Finally, two plausible catalytic cycles were proposed to elucidate the reaction mechanisms.  相似文献   

17.
18.
A highly enantioselective cyanohydrin synthesis with aromatic aldehydes using chiral lithium binaphtholate aqua or alcohol complexes has been developed and is a simple and inexpensive catalyst suitable for process chemistry to give gram-scale cyanohydrins successfully. Dramatic improvements in enantiomeric excess have been realized along with an interesting changeover in absolute stereochemistry of cyanohydrin product against the thoroughly "dry" catalytic systems.  相似文献   

19.
The asymmetric synthesis of O-acetylated mandelonitrile derivative was accomplished from PhCHO, KCN, and Ac2O in a toluene--water system in the presence of transition metal complexes of Schiff"s bases as phase transfer catalysts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号