首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 824 毫秒
1.
The method of mergeable asymptotic expansions has recently been used effectively in investigations devoted to the study of boundary layer interaction with an external inviscid flow at high subcritical Reynolds numbers Re. The asymptotic analysis permits obtaining a limit pattern of the flow around a solid as Re þ, and determining the similarity and quantitative regularity laws which are in good agreement with experimental results. Thus by using the method of mergeable asymptotic expansions it is shown in [1–4] that near sites with high local curvature of the body contour and flow separation and attachment points, an interaction domain appears that has a small length on the order of Re-3/8. In this flow domain, which has a three-layer structure, the pressure distribution in a first approximation already depends on the change in boundary-layer displacement thickness, while the induced pressure gradient, in turn, influences the flow in the boundary layer. An analogous situation occurs in the neighborhood of the trailing edge of a flat plate where an interaction domain also appears [5, 6]. The flow in the neighborhood of the trailing edge of a flat plate around which a supersonic viscous gas flows was examined in [7]. Numerical results in this paper show that the friction stress on the plate surface remains positive everywhere in the interaction domain, and grows on approaching the trailing edge. The supersonic flow around the trailing edge of a flat plate at a small angle of attack was investigated in [8, 9], Supersonic flow of a viscous gas in the neighborhood of the trailing edge of a flat plate at zero angle of attack is examined in [10], but with different velocity values in the inviscid part of the flow on the upper and lower sides of the plate. The more general problem of the flow around the trailing edge of a profile with small relative thickness is investigated in this paper.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 36–42, May–June, 1981.  相似文献   

2.
Direct numerical simulations of instability development and transition to turbulence in a supersonic boundary layer on a flat plate are performed. The computations are carried out for moderate supersonic (free-stream Mach number M = 2) and hypersonic (M = 6) velocities. The boundary layer development is simulated, which includes the stages of linear growth of disturbances, their nonlinear interaction, stochastization, and turbulent flow formation. A laminar–turbulent transition initiated by distributed roughness of the plate surface at the Mach number M = 2 is also considered.  相似文献   

3.
When the air temperature reaches 600 K or higher, vibration is excited. The specific heat is not a constant but a function of temperature. Under this condition, the transition position of hypersonic sharp wedge boundary layer is predicted by using the improved eN method considering variable specific heat. The transition positions with different Mach numbers of oncoming flow, half wedge angles, and wall conditions are computed condition, the nearer to the Mach number The results show that for the same oncoming flow condition and wall transition positions of hypersonic sharp wedge boundary layer move much leading edge than those of the flat plate. The greater the oncoming flow the closer the transition position to the leading edge.  相似文献   

4.
A study is made of the three-dimensional flow of a viscous gas around a flat plate with an inflection in the generator of the leading edge in the case of strong interaction between the exterior hypersonic flow and the boundary layer. Numerical solutions to the problem are obtained. It is shown that near points of inflection of the profile of the leading edge of a flat wing strong self-induced secondary flows can be formed together with associated local peaks of the heat fluxes and the friction.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 40–45, May–June, 1980.  相似文献   

5.
The results of a wind-tunnel experiment on the joint action of periodic acoustic fast-mode disturbances of the outer flow and disturbances generated at the leading edge of a plate on the hypersonic (M = 21) viscous shock layer on the plate are presented. The possibility of positively controlling the intensity of density fluctuations in the plate shock layer by means of disturbances introduced from the leading edge is shown. Direct numerical simulation of the suppression (enhancement) of disturbances under the simultaneous action on the shock layer of the two-dimensional fast-mode acoustic waves in the outer flow and the source of two-dimensional suction/injection disturbances near the leading edge of the plate is performed under the experimental conditions. The experimental and calculated results are shown to be in good agreement.  相似文献   

6.
The interaction between a boundary layer and a supersonic flow past a plate with a flap deflected at a small angle in the presence of strong cooling of the body surface is considered. For supercritical regimes, the entire interaction region is located behind the leading edge of the flap and the pressure distribution has a discontinuity of the derivative near the corner point. The flow in a break-point neighborhood with a characteristic length x of the order of the boundary layer thickness is studied. It is shown that in this region a substantial pressure difference arises. The pressure distribution along the surface is found. The viscous sublayer in this region develops under the action of the given pressure gradient.  相似文献   

7.
The stability of hypersonic viscous gas flow in a shock layer in the neighborhood of a flat plate is considered. The stability of the velocity, temperature, density, and pressure profiles calculated on the basis of the complete viscous shock layer equations is investigated within the framework of the linear stability theory with allowance for the shock wave relations. The calculated perturbation growth rates and phase velocities are compared with the experimental data obtained by means of electron-beam fluorescence.  相似文献   

8.
Laminar boundary layer flow over an infinite-span, finite-length flat plate is investigated in the regime of strong interaction with a hypersonic gas flow. Under the assumption that an additional condition dependent on the transverse coordinate can be imposed on the trailing edge of the plate the flow functions are expanded in power series in the vicinity of the leading edge. It is shown that these expansions include an indefinite function dependent on the transverse coordinate. The corresponding boundary value problems are formulated and solved and the eigenvalues are determined. It is established that in this case the two-dimensional boundary layer can rearrange itself into a three-dimensional boundary layer.  相似文献   

9.
Effect of a two-dimensional smooth hump on linear instability of hypersonic boundary layer is studied by using parabolized stability equations. Linear evolution of mode S over a hump is analyzed for Mach 4.5 and 5.92 flat plate and Mach 7.1 sharp cone boundary layers. Mean flow for stability analysis is obtained by solving the parabolized Navier–Stokes equations. Hump with height smaller than local boundary layer thickness is considered. The case of flat plate and sharp cone without the hump are also studied to provide comparable data. For flat plate boundary layers, destabilization and stabilization effect is confirmed for hump located at upstream and downstream of synchronization point, respectively. Results of parametric studies to examine the effect of hump height, location, etc., are also given. For sharp cone boundary layer, stabilization influence of hump is also identified for a specific range of frequency. Stabilization influence of hump on convective instability of mode S is found to be a possible cause of previous experimental observations of delaying transition in hypersonic boundary layers.  相似文献   

10.
The determination of the critical transition Reynolds number is of practical importance for some engineering problems. However, it is not available with the current theoretical method, and has to rely on experiments. For supersonic/hypersonic boundary layer flows, the experimental method for determination is not feasible either. Therefore,in this paper, a numerical method for the determination of the critical transition Reynolds number for an incompressible plane channel flow is proposed. It is basically aimed to test the feasibility of the method. The proposed method is extended to determine the critical Reynolds number of the supersonic/hypersonic boundary layer flow in the subsequent papers.  相似文献   

11.
The transitional separated–reattached flow on a flat plate with a blunt leading edge under 2% free-stream turbulence (FST) is numerically simulated using the Large-eddy simulation (LES) approach. The Reynolds number based on the free-stream velocity and the plate thickness is 6500. A dynamic subgrid-scale model is employed and the LES results compare well with the available experimental data.It is well known that FST enhances shear-layer entrainment rates, reduces the mean reattachment distance, and causes early transition to turbulence leading to an early breakdown of the separated boundary layer. Many experimental studies have shown that different vortex shedding frequencies exist, specially the so called low-frequency flapping when there is a separation bubble but its mechanism is still not completely understood. The previous study by us without free-stream turbulence (NFST) did not show the existence of such a low-frequency flapping of the shear layer and it is not clear what the effects of FST will have on these shedding modes. Detailed analysis of the LES data has been presented in the present paper and the low-frequency flapping has not been detected in the current study.  相似文献   

12.
G. N. Dudin 《Fluid Dynamics》1982,17(5):693-698
The results are given of the calculation of a three-dimensional boundary layer on a triangular plate of finite length in a regime of strong viscous interaction with an external hypersonic stream for both symmetric flow as well as in the presence of an angle of slip. The influence of the change in the pressure on the trailing edge of the plate on the boundary layer characteristics is investigated.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 46–52, September–October, 1982.  相似文献   

13.
The results of theoretical and experimental investigations of the hypersonic flow around a plate with a shap leading edge are presented. Step-by-step verification of the numerical model of the full viscous shock layer is performed: the calculated density profiles, shock wave inclinations, and the Stanton numbers are compared with experimental data obtained using the method of electron-beam fluorescence, calorimetric gages and IR imaging system.  相似文献   

14.
The receptivity of a supersonic (M = 6) boundary layer on a flat plate to acoustic disturbances is investigated on the basis of a numerical solution of the 2D Navier-Stokes equations. Numerical results obtained for fast and slow acoustic waves impinging on the plate at zero angle agree qualitatively with asymptotic theory. Calculations carried out for other angles of incidence of the acoustic waves reveal new features of the perturbation field in the neighborhood of the leading edge of the plate. It is shown that, due to visco-inviscid interaction, the shock formed near the leading edge may significantly affect the acoustic field and the receptivity.  相似文献   

15.
The spatio-temporal dynamics of small disturbances in viscous supersonic flow over a blunt flat plate at freestream Mach number M=2.5 is numerically simulated using a spectral approximation to the Navier–Stokes equations. The unsteady solutions are computed by imposing weak acoustic waves onto the steady base flow. In addition, the unsteady response of the flow to velocity perturbations introduced by local suction and blowing through a slot in the body surface is investigated. The results indicate distinct disturbance/shock-wave interactions in the subsonic region around the leading edge for both types of forcing. While the disturbance amplitudes on the wall retain a constant level for the acoustic perturbation, those generated by local suction and blowing experience a strong decay downstream of the slot. Furthermore, the results prove the importance of the shock in the distribution of perturbations, which have their origin in the leading-edge region. These disturbance waves may enter the boundary layer further downstream to excite instability modes.  相似文献   

16.
The joint effect of the permeability and the roughness of the flat plate surface on the boundary layer stability and laminar-turbulent transition is experimentally and theoretically investigated at the freestream Mach number M = 2. It is shown that, as a certain roughness value is reached, and with increase in the porous coating thickness (on a certain range), the boundary layer stability against natural disturbances diminishes and laminar-turbulent transition is displaced toward the leading edge of the model.  相似文献   

17.
The interaction between a normally impinging shock wave and the boundary layer on a plate with slip is studied in the neighborhood of the leading edge using various experimental methods, including special laser technology, to visualize the supersonic conical gas flows. It is found that in the “non-free” interaction, when the leading edge impedes the propagation of the boundary layer separation line upstream, the structure of the disturbed flow is largely identical to that in the developed “free” interaction, but with higher parameter values and gradients in the leading part of the separation zone. The fundamental property of developed separation flows, namely, coincidence of the values of the pressure “plateau” in the separation zone and the pressure behind the oblique shock above the separation zone of the turbulent boundary layer, is conserved. Moscow. e-mail: ostap@inmech.msu.su. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 57–69, May–June, 2000. The work was carried out with financial support from the Russian Foundation for Basic Research (project No. 97-01-00099).  相似文献   

18.
The non-free interaction between a shock wave and the boundary layer on a swept plate set at incidence in the undisturbed flow is studied using different experimental methods including special laser techniques for visualizing supersonic conical gas flows. It is shown that under shock-layer conditions the non-free interaction can lead to conical flow breakdown before the incident shock reaches the leading edge of the plate.Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 6, 2004, pp. 45–58. Original Russian Text Copyright © 2004 by Zubin and Ostapenko.  相似文献   

19.
The flow past a flat plate with a blunted leading edge by a flow of a viscous incompressible fluid with a small spanwise-periodic, steady nonuniformity of the velocity profile is considered. Such a flow simulates the interaction of one type of vortex disturbances of a turbulent external flow with the boundary layer. The solution obtained predicts generation of strong disturbances in the boundary layer, which are similar to the streaky structure observed in the case of high free-stream turbulence. It is shown that the boundary-layer flow on blunted bodies is more sensitive to vortex disturbances than on a plate with a sharp leading edge. Central Aerohydrodynamic Institute, Zhukovskii, 140160. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 41, No. 4, pp. 93–100, July–August, 2000.  相似文献   

20.
The paper is a mathematical study of the three-dimensional flow of viscous gas in a hypersonic boundary layer that develops along a flat wing whose leading edge has a step shape. The flow interacts with a flap on the wing set at a small angle. A linear solution to the problem is constructed under the assumption that the deflection angle of the flap is small and the difference between the length of the plates is of order unity. It is shown that an important part in the formation of the flow near and behind the flap may be played by the change in the pressure along the span of the wing due to the step shape of the leading edge. It is significant that although the pressure and displacement thickness are continuous functions of the transverse coordinate, the longitudinal and transverse components of the friction force have discontinuities.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 19–26, March–April, 1991.I thank V. V. Sychev and A. I. Ruban for suggesting the problem, for valuable advice, and assistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号