首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 646 毫秒
1.
In this work, plasma enhanced chemical vapour deposition was used to prepare hydrogenated amorphous carbon films (a-C:H) on different substrates over a wide range of thickness. In order to observe clear substrate effect the films were produced under identical growth conditions. Raman and near edge X-ray absorption fine structure (NEXAFS) spectroscopies were employed to probe the chemical bonding of the films. For the films deposited on silicon substrates, the Raman ID/IG ratio and G-peak positions were constant for most thickness. For metallic and polymeric substrates, these parameters increased with film thickness, suggesting a change from a sp3-bonded hydrogenated structure to a more sp2 network, NEXAFS results also indicate a higher sp2 content of a-C:H films grown on metals than silicon. The metals, which are poor carbide precursors, gave carbon films with low adhesion, easily delaminated from the substrate. The delamination can be decreased/eliminated by deposition of a thin (∼10 nm) silicon layer on stainless steel substrates prior to a-C:H coatings. Additionally we noted the electrical resistivity decreased with thickness and higher dielectric breakdown strength for a-C:H on silicon substrate.  相似文献   

2.
UV irradiation of polymeric PMMA films containing HAuCl4 followed by annealing at 60-80 °C forms gold nanoparticles directly within the bulk material. The kinetics of nanoparticle formation was traced by extinction spectra of nanocomposite film changes vs annealing time. We propose that UV irradiation causes HAuCl4 dissociation and thus provides a polymeric matrix with atomic gold. The presence of an oversaturated solid solution of atomic gold in the polymeric matrix leads to Au nanoparticle formation during annealing. This process can be understood as a phase transition of the first order. In this paper we apply several common kinetic models of the phase transition for describing Au nanoparticle formation inside the solid polymer matrix. We compare predictions of these models with the experimental data and show that these models cannot describe the process. We propose that the stabilization effect of the matrix on the growing gold nanoparticles is important. The simplest model introducing some probability for the transition from growing nanoparticle to the non-growing, stabilized form is suggested. It is shown that this model satisfactorily describes the experimentally observed evolution of the extinction spectrum of Au nanoparticles forming in a polymer matrix.  相似文献   

3.

The composition of nitrogen-doped hydrogenated amorphous carbon (a-C : H : N) films grown in a magnetically confined rf plasma-enhanced chemical vapour deposition system has been determined by X-ray photoelectron spectroscopy (XPS) and compared with that determined using a combination of elastic recoil detection analysis, Rutherford back-scattering and nuclear reaction analysis. The importance of nitrogen doping or 'incorporation' in hydrogenated amorphous carbon (a-C : H) films is discussed in relation to the significant variation in the sp 2 -to-sp 3 ratio that takes place. At 7 at.% N in the a-C : H matrix, a critical change in the microstructure is observed, which governs the resulting mechanical, optical and electronic properties. Finally, the correlation between the sp 2 and sp 3 fractions determined by a non-destructive method of obtaining the bond fractions (XPS) and by electron-energy-loss spectroscopy is discussed, with a view to evaluating accurately the sp 2 fraction in a-C : H : N films.  相似文献   

4.
Titanium-containing amorphous hydrogenated silicon–carbon films (aSi1-xCx:H/Ti) have been deposited by reactive magnetron cosputtering. Core-level photoelectron spectroscopy (XPS) and valence-band photoelectron spectroscopy (UPS) have served as means for the characterization of these films. The spectroscopic data are interpreted by a structural model on the basis of a nanocomposite containing clusters of a Ti-C-Si alloy being embedded in an amorphous hydrogenated silicon–carbon matrix (aSi1-xCx:H). The Ti-C-Si compound is of metallic character and most likely a substitutional solid solution. This novel nanocomposite material is a promising candidate for applications, especially as optical selective absorber coating for solar collectors. Received: 10 July 2000 / Accepted: 15 September 2000 / Published online: 21 March 2001  相似文献   

5.
Free-standing and supported hydrogenated amorphous carbon films (a:C–H) were prepared upon pyrolysis of the polymer formed by ethanolamine (EA) and citric acid (CA), under an ambient atmosphere at 300 °C. EA facilitates the formation of the macroscopic films, while CA is essential for obtaining the a:C–H microstructure, which comprises a mixture of sp2 and sp3 carbon. Received: 29 May 2001 / Accepted: 17 August 2001 / Published online: 20 December 2001  相似文献   

6.
采用电解法实现了非晶态Y,Ni95合金的加氢。在1.5—400K温度范围内测量了a-Y,Ni95Hx(x=0—15.1)合金的磁矩、电阻率和霍耳电阻率随氢含量的变化关系。结果指出,随氢含量增加,样品的0K磁矩、居里温度和电阻率温度系数显著下降,而高场磁化率、电阻率和反常霍耳系数则迅速增加。借助现行的理论对加氢引起的上述影响进行了简要的讨论。 关键词:  相似文献   

7.
Carbon films were prepared on single crystal silicon substrates by heat-treatment of a polymer-poly(phenylcarbyne) at 800 °C in Ar atmosphere. The heat-treatment caused the change of the polymer into carbon film, which exhibited good field emission properties. Low turn-on emission field of 4.3 V/μm (at 0.1 μA/cm2) and high emission current density of 250 μA/cm2 (at 10 V/μm) were observed for the polymer-converted carbon films. This behavior was demonstrated to be mainly related to the microstructure of the carbon films, which consisted of fine carbon nanoparticles with high sp2 bonding. The carbon films, which can be deposited simply with large areas, are promising for practical applications in field emission display.  相似文献   

8.
Amorphous hydrogenated carbon (a-C:H) thin films deposited on a silicon substrate under various mixtures of methane-hydrogen gas by electron cyclotron resonance microwave plasma chemical vapor deposition (ECR-MPCVD) was investigated. Microstructure, surface morphology and mechanical characterizations of the a-C:H films were analyzed using Raman spectroscopy, atomic force microscopy (AFM) and nanoindentation technique, respectively. The results indicated there was an increase of the hydrogen content, the ratio of the D-peak to the G-peak (ID/IG) increased but the surface roughness of the films was reduced. Both hardness and Young's modulus increased as the hydrogen content was increased. In addition, the contact stress-strain analysis is reported. The results confirmed that the mechanical properties of the amorphous hydrogenated carbon thin films improved using a higher H2 content in the source gas.  相似文献   

9.
孙兆奇  蔡琪  宋学萍 《中国物理》2006,15(4):859-865
The microstructure and optical absorption of Au-MgF2 nanoparticle cermet films with different Au contents are studied. The microstructural analysis shows that the films are mainly composed of the amorphous MgF2 matrix with embedded fcc Au nanoparticles with a mean size of 9.8-21.4nm. Spectral analysis suggests that the surface plasma resonance (SPR) absorption peak of Au particles appears at λ=492-537nm. With increasing Au content, absorption peak intensity increases, profile narrows and location redshifts. Theoretical absorption spectra are calculated based on Maxwell-Garnett theory and compared with experimental spectra.  相似文献   

10.
Nano-Ag particles, with dodecylamine (DDA) and dodecanethiol (DDT) as the protective agent, were prepared and studied in order to investigate the effect of protective agent in the post heat-treatment of nano-Ag films. Results of electrical resistivity, micro-structural evolution and thermal analysis showed that the Ag-DDA films require a lower treatment temperature to convert into conductive materials compared to that of the Ag-DDT films. And the Ag-DDA films also have lower final electrical resistivity as well as more uniform and dense microstructure in comparison with the Ag-DDT films. Further study indicated that Ag-DDA films are thermodynamically unstable and the sinter of Ag-DDA particles could occur spontaneously even at room temperature. FT-IR, 1H NMR and X-ray diffraction determinations revealed that both DDA and DDT molecules coordinate to the surface of nano-Ag particles through their head-groups. The bonding energy of Ag-S is higher than that of Ag-N and the alkyl chains ordering of chemisorbed DDT is also higher than that of chemisorbed DDA. It is implied that the post heat-treatment temperature and final resistivity of nano-Ag films are associated with the bonding energy and configuration of different capping molecules. Finally the conductive ink was prepared with well dispersed Ag-DDA nanoparticles and the ink-jet printed patterns on PI films show a sheet resistance of 166 mΩ/□ after heat-treating at 140 °C for 60 min.  相似文献   

11.
Formation of LaFeO3 nanoparticles obtained from thermal decomposition of organometallic precursors was investigated as a function of the heat-treatment temperature. The precursors heat-treated below 300°C were amorphous, but above 350°C a single-phase of nanocrystalline LaFeO3 was formed. The LaFeO3 nanoparticles showed the superparamagnetic behavior in both magnetization and M?ssbauer measurements. With increasing heat-treatment temperature, the crystallite size of LaFeO3 nanoparticles was gradually increased. The quadrupole splitting and isomer shift of paramagnetic doublet pattern were affected by the growth of LaFeO3 particles.  相似文献   

12.
Thin layers of hydrogenated amorphous carbon were prepared by using organic hydrocarbon source, xylene (C8H10), in plasma-enhanced chemical vapor deposition (PECVD) system. The microstructures were characterized by using Fourier-transform infrared and Raman scattering spectra. The appearance of a sharp vibration signal in 1600 cm-1 strongly suggests the existence of sp2 carbon clusters with aromatic rings. With increasing the deposition rf power, the content of these aromatic structures is increased in the films. In contrast to a broad single PL peak in methane (CH4)-baseda-C:H films, the PL band of xylene-based a-C:H films contains multiple peaks in blue-green light region, which is influenced by rf power. We tentatively attributed it to the radiative recombination of electron-hole pairs through some luminescent centers associated with aromatic structures. Received: 26 April 2000 / Accepted: 9 May 2000 / Published online: 13 September 2000  相似文献   

13.
In this work, amorphous and crystalline TiO2 films were synthesized by the sol–gel process at room temperature. The TiO2 films were doped with gold nanoparticles. The films were spin-coated on glass wafers. The crystalline samples were annealed at 100°C for 30 minutes and sintered at 520°C for 2 h. All films were characterized using X-ray diffraction, transmission electronic microscopy and UV-Vis absorption spectroscopy. Two crystalline phases, anatase and rutile, were formed in the matrix TiO2 and TiO2/Au. An absorption peak was located at 570 nm (amorphous) and 645 nm (anatase). Photoconductivity studies were performed on these films. The experimental data were fitted with straight lines at darkness and under illumination at 515 nm and 645 nm. This indicates an ohmic behavior. Crystalline TiO2/Au films are more photoconductive than the amorphous ones.  相似文献   

14.
The effect of acetylene partial pressure on the structural and morphological properties of multi-walled carbon nanotubes (MWCNTs) synthesized by CVD on iron nanoparticles dispersed in a SiO2 matrix as catalyst was investigated. The general growing conditions were: 110 cm3/min flow rate, 690 °C synthesis temperature, 180 Torr over pressure and two gas compositions: 2.5% and 10% C2H2/N2. The catalyst and nanotubes were characterized by HR-TEM, SEM and DRX. TGA and DTA were also carried out to study degradation stages of synthesized CNTs. MWCNTs synthesized with low acetylene concentration are more regular and with a lower amount of amorphous carbon than those synthesized with a high concentration. During the synthesis of CNTs, amorphous carbon nanoparticles nucleate on the external wall of the nanotubes. At high acetylene concentration carbon nanoparticles grow, covering all CNTs’ surface, forming a compact coating. The combination of CNTs with this coating of amorphous carbon nanoparticles lead to a material with high decomposition temperature.  相似文献   

15.
Tin oxide (SnO2) thin films (about 200 nm thick) have been deposited by electron beam evaporation followed by annealing in air at 350-550 °C for two hours. Optical, electrical and structural properties were studied as a function of annealing temperature. The as-deposited film is amorphous, while all other annealed films are crystalline (having tetragonal structure). XRD suggest that the films are composed of nanoparticles of 5-10 nm. Raman analysis and optical measurements suggest quantum confinement effects that are enhanced with annealing temperature. For instance, Raman peaks of the as-deposited films are blue-shifted as compared to those for bulk SnO2. Blue shift becomes more pronounced with annealing temperature. Optical band gap energy of amorphous SnO2 film is 3.61 eV, which increases to about 4.22 eV after crystallization. Two orders of magnitude decrease in resistivity is observed after annealing at 350-400 °C due to structural ordering and crystallization. The resistivity, however, increases slightly with annealing temperature above 400 °C, possibly due to improvement in stoichiometry and associated decrease in charge carrier density.  相似文献   

16.
In this work, we extracted the film's hardness (HF) of ultra-thin diamond-like carbon layers by simultaneously taking into account the tip blunting and the substrate effect. As compared to previous approaches, which did not consider tip blunting, this resulted in marked differences (30-100%) for the HF value of the thinner carbon coatings. We find that the nature of the substrate influences this intrinsic film parameter and hence the growth mechanisms. Moreover, the HF values generally increase with film thickness. The 10 nm and 50 nm thick hydrogenated amorphous carbon (a-C:H) films deposited onto Si have HF values of, respectively, ∼26 GPa and ∼31 GPa whereas the 10 nm and 50 nm thick tetrahedral amorphous carbon (t-aC) films deposited onto Si have HF values of, respectively, ∼29 GPa and ∼38 GPa. Both the a-C:H and t-aC materials also show higher density and refractive index values for the thicker coatings, as measured, respectively by X-ray reflectometry and optical profilometry analysis. However, the Raman analysis of the a-C:H samples show bonding characteristics which are independent of the film thickness. This indicates that in these ultra-thin hydrogenated carbon films, the arrangement of sp2 clusters does not relate directly to the hardness of the film.  相似文献   

17.
Granular silver films deposited on a thin insulating film of amorphous hydrogenated carbon (a-C:H) and transparent conducting electrode (polycrystalline indium tin oxide (ITO) layer) have been investigated by spectroscopy and microscopy methods. The extinction spectra of silver films on the surface of these materials are found to be significantly different. An annealing of silver films causes a blue shift of the peak of plasmon resonance band in the spectrum of silver nanoparticles: by 16 nm on the a-C:H surface and by 94 nm on the ITO surface. Silver films on the surface of a-C:H films are characterized by a narrower band in the extinction spectrum, which is peaked at 446 nm. The changes observed in the optical density of Ag films are related to the change in size and area of nanoparticles. The results of spectral studies of Ag films are in agreement with the data on the nanostructure obtained by scanning electron microscopy and statistical image processing. The spectra of granular silver films are shown to correlate well with the nanoparticle distribution function over the film area.  相似文献   

18.
Optics and Spectroscopy - Spectra of optical density of granulated 2-nm-thick gold films deposited on the surface of thin films of amorphous hydrogenated carbon (a-C:H) on quartz substrates are...  相似文献   

19.
 用射频(13.56MHz)反应溅射法制备了a-SiC:H 薄膜,并将制得的薄膜采用高能中子(14MeV)进行辐照。采用电阻率、Raman谱及红外光谱对薄膜的结构与特性变化规律进行了表征。分析结果表明:所得a-SiC:H薄膜中存在多余的非晶态碳。随着中子辐照剂量的增加,a-SiC:H薄膜中SP-2C=C键增加,即其中的碳存在类石墨化的趋势。中子辐照后薄膜的电阻率的略微减小现象,可用缺陷对载流子的捕获模型进行解释。  相似文献   

20.
New organometallic salts were synthesized in aqueous solution and were used as precursors for the functionalization of carbon nanotubes (CNT) by metallic nanoparticles. The precursors were obtained by reaction between HAuCl4, (NH4)2PtCl6, (NH4)2PdCl6, or (NH4)3RhCl6 with cetyltrimethylammonium bromide (CTAB). The as-obtained (CTA) n Me x Cl y salts (with Me?=?Au, Pt, Pd, Rh) were characterized by Fourier-transform infra-red (FTIR) spectroscopy, 1H nuclear magnetic resonance (NMR) spectroscopy, and thermogravimetric analysis. These precursors were then used to synthesize metallic nanoparticles of Au, Pt, Pd, and Rh over multiwalled carbon nanotubes (MWCNT). Characterization by scanning transmission electron microscopy (STEM) and thermogravimetric analysis under air reveals that the CNT-supported catalysts exhibit high loading and good dispersion of the metallic nanoparticles with small average particle sizes. The present preparation procedure therefore allows obtaining high densities of small metallic nanoparticles at the surface of MWCNT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号