首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evidence about the remarkable acidic nature of molecular water adsorbed at the surface of mesoporous MCM-41 silicoaluminas (MSA) with a ratio of Si/Al = 25 is reported, coming from both infrared spectroscopy and ab initio calculations. By using CO as a probe, OH stretching and HOH bending modes of water adsorbed on coordinatively unsaturated Al ions (Lewis sites) at the surface of MSA have been detected for the first time. CO adsorption causes OH stretching frequencies to suffer a bathochromic shift of about -200/-250 cm(-1), whereas the HOH bending frequency undergoes a hypsochromic shift by about +10/+20 cm(-1). B3LYP/6-31+G(d,p) calculations on model clusters designed to mimic both Br?nsted and Lewis sites validate the assignments, showing that water adsorbed on the surface Lewis site, when interacting with CO, shows an acidity comparable to that of a classical zeolitic Br?nsted site.  相似文献   

2.
The joint use of microcalorimetric and computational approaches has been adopted to describe H2O interaction with cus Al(III) Lewis and Si(OH)+ Al- Br?nsted acidic sites within H-BEA and H-MFI zeolites (both with approximately 6 Al/unit cell). Adsorption data obtained at 303 K were compared to experimental model systems, such as all-silica zeolites, amorphous silica, and silico-alumina, transition alumina. In parallel, ab initio molecular modeling was carried out to mimic, in a cluster approach, Lewis and Br?nsted acidic sites, as well as a variety of Si-OH species either with H-bonding interacting (nests and pairs) or isolated. H-BEA and H-MFI water affinity values were found to be almost equivalent, in both quantitative and energetic terms, in that dominated by Al-containing sites population, more than by nanocavity topology or by acidic site nature. Both H-zeolites, saturated with approximately 5 Torr of H2O vapor, bind approximately 4 H2O per Al site, almost one of which is tightly bound and not eliminated by RT pumping-off. A 160 < q(diff) < 80 kJ/mol interval was measured for the adsorption up to 1H2O/Al. The zero-coverage heat of adsorption (q0 approximately 160 kJ/mol, for both H-zeolites) was assigned to H2O/Lewis complex formation, which dominates the early stage of the process, in agreement with the ab initio computed H2O/Lewis sites binding energy. The rather broad q(diff) interval was interpreted as due to the simultaneous adsorption of H2O on both structural Br?nsted sites and strongly polarized H2O already adsorbed on Lewis sites. For this latter species, BE = 74 kJ/mol was computed, slightly higher than BE = 65 kJ/mol for H2O/Br?nsted sites interaction, showing that H2O coordinated on cus Al(III) Lewis sites behaves as a structural Br?nsted site. The investigated all-silica zeolites have been categorized as hydrophilic in that the measured heat of adsorption (100 < q(diff) < 44 kJ/mol) was larger than the heat of liquefaction of water (44 kJ/mol) in the whole coverage examined. Indeed, polar defects present in the hydrophobic Si-O-Si framework do form relatively stable H2O adducts. Crystalline versus amorphous aluminosilicate q(diff) versus n(ads) plots showed that the measured adsorption heat is lower than expected, due to the extraction work of Al atoms from the amorphous matrix to bring them in interaction with H2O. On the contrary, such an energy cost is not required for the crystalline material, in which acidic sites are already in place, as imposed by the rigidity of the framework. Modeling results supported the experimental data interpretation.  相似文献   

3.
喻志武  王强  陈雷  邓风 《催化学报》2012,(1):2140-2150
采用各种固体核磁共振 (NMR) 技术详细研究了 H-MCM-22 分子筛中 Brnsted/Lewis 酸的协同效应. 二维 1H 双量子魔角旋转 (DQ-MAS) NMR 结果表明, 在脱铝 H-MCM-22 分子筛中 Brnsted 酸位 (骨架桥式羟基) 和 Lewis 酸位 (非骨架铝羟基) 之间是空间邻近的, 暗示着可能存在 B/L 酸协同效应. 二维 27Al DQ-MAS NMR 结果揭示了各种铝物种之间的空间邻近性, 表明 B/L 酸协同效应优先发生在 H-MCM-22 分子筛超笼中的骨架 T6 位铝和非骨架铝物种之间. 2-13C-丙酮探针分子实验发现, 因 B/L 酸协同效应而导致脱铝 H-MCM-22 分子筛酸性明显增强, 氘代吡啶探针分子实验也证实在 H-MCM-22 分子筛的超笼中发生了 B/L 酸协同效应. 上述结果将有助于我们理解在脱铝 H-MCM-22 分子筛上发生的多相催化机理.  相似文献   

4.
The adsorption of 2-chloropyridine on SiO(2), TiO(2), ZrO(2), SiO(2)-Al(2)O(3) and H-mordenite has been studied by IR spectroscopy. The different modes of interaction with oxide surfaces, i.e. hydrogen-bonding and adsorption at Br?nsted or Lewis acid sites, was modelled by ab initio calculations at the B3LYP/DZ+(d) level. Adsorption on SiO(2) results in hydrogen bonding to surface hydroxyl groups, whereas the spectra obtained following adsorption on TiO(2) and ZrO(2) display evidence for electron transfer at Lewis acidic surface sites. Protonation of 2-chloropyridine at Br?nsted acidic sites was detected only for adsorption on SiO(2)-Al(2)O(3) and H-mordenite, indicating the presence of Br?nsted acidic sites on these oxide surfaces with pK(a) values 相似文献   

5.
The Br?nsted/Lewis acid synergy in dealuminated HY zeolite has been studied using solid-state NMR and density function theory (DFT) calculation. The 1H double quantum magic-angle spinning (DQ-MAS) NMR results have revealed, for the first time, the detailed spatial proximities of Lewis and Br?nsted acid sites. The results from 13C NMR of adsorbed acetone as well as DFT calculation demonstrated that the Br?nsted/Lewis acid synergy considerably enhanced the Br?nsted acid strength of dealuminated HY zeolite. Two types of Br?nsted acid sites (with enhanced acidity) in close proximity to extra-framework aluminum (EFAL) species were identified in the dealuminated HY zeolite. The NMR and DFT calculation results further revealed the detailed structures of EFAL species and the mechanism of Br?nsted/Lewis acid synergy. Extra-framework Al(OH)3 and Al(OH)2+ species in the supercage cage and Al(OH)2+ species in the sodalite cage are the preferred Lewis acid sites. Moreover, it is the coordination of the EFAL species to the oxygen atom nearest the framework aluminum that leads to the enhanced acidity of dealuminated HY zeolite though there is no direct interaction (such as the hydrogen-bonding) between the EFAL species and the Br?nsted acid sites. All these findings are expected to be important in understanding the roles of Lewis acid and its synergy with the Br?nsted acid in numerous zeolite-mediated hydrocarbon reactions.  相似文献   

6.
7.
Rate and equilibrium constants were determined for protonation of ring-substituted -methoxystyrenes by hydronium ion and by carboxylic acids to form the corresponding ring-substituted alpha-methyl alpha-methoxybenzyl carbocations at 25 degrees C and I = 1.0 (KCl). The thermodynamic barrier to carbocation formation increases by 14.5 kcal/mol as the phenyl ring substituent(s) is changed from 4-MeO- to 3,5-di-NO2-, and as the carboxylic acid is changed from dichloroacetic to acetic acid. The Br?nsted coefficient alpha for protonation by carboxylic acids increases from 0.67 to 0.77 over this range of phenyl ring substituents, and the Br?nsted coefficient beta for proton transfer increases from 0.63 to 0.69 as the carboxylic acid is changed from dichloroacetic to acetic acid. The change in these Br?nsted coefficients with changing reaction driving force, (inverted theta)alpha/ (inverted theta) deltaG(av) degrees=(inverted theta)beta/(inverted theta)delta G(av) degrees= 1/8lambda = 0.011, is used to calculate a Marcus intrinsic reaction barrier of lambda= 11 kcal/mol which is close to the barrier of 13 kcal/mol for thermoneutral proton transfer between this series of acids and bases. The value of alpha= 0.66 for thermoneutral proton transfer is greater than alpha= 0.50 required by a reaction that follows the Marcus equation. This elevated value of beta may be due to an asymmetry in the reaction coordinate that arises from the difference in the intrinsic barriers for proton transfer at the oxygen acid reactant and resonance-stabilized carbon acid product.  相似文献   

8.
The metal-support interaction of a dispersed Pt atom on H-ZSM-5 zeolite has been investigated by using an embedded cluster and cluster models with the density functional theory/B3LYP functional method. We found that the Pt atom interacts with a Br?nsted proton and a nearby framework oxygen. Interaction with the framework oxygen causes electron transfer from the zeolite to the Pt atom. Concurrently, a Br?nsted proton stabilizes the Pt atom on the zeolite surface by withdrawing excess electron density from the Pt atom. These charge transfers result in a zero net charge on the Pt atom while changing its orbital occupation. The binding energy of Pt on the Br?nsted acid was 15 kcal/mol. Inclusion of the Madelung potential by Surface Charge Representation of the Electrostatic Embedded Potential method (SCREEP) had small effects on structure and charge density of Pt/H-ZSM-5 but it shifted the stretching mode of CO toward a higher frequency by almost 40 cm(-1). The frequency shift of absorbed CO calculated with embedded cluster models was from 8 to 11 cm(-1) red shift, compared to 20 cm(-1) red shift from experiment. This implies that not only the electronic state of the Pt atom but also the Madelung potential of the support is responsible for the observed small red shift of CO on the Pt-H-ZSM-5.  相似文献   

9.
This work provides a chemical approach to the relationship between structure and electronic behavior of the active surface of the WO(x)-ZrO(2) system as a function of W loads. This study shows that the electronic hardness (eta), the Lewis and Br?nsted acidity are functions of the local coordination and of the polymerization degree of the WO(x) domain. From theoretical calculations the observed behavior in the WO(x)-ZrO(2) system is explained: the Br?nsted acidity increases while the Lewis acidity decreases as the W centers go from tetrahedral to octahedral coordination and as the condensation degree of the WO(x) domain increases. Our results also indicate that not all the Br?nsted sites in the WO(x) domains are equally acid, and that as the W load increases the most acid sites decrease in number due to the condensation process. This finding also means a decrease on the average acidity per H site. Additionally, our results suggest that for surface densities in the 4-7 W nm(-2) range, mainly dimeric-tungstate species are present. A maximum in Br?nsted acidity was observed for a W surface density about 7 W nm(-2).  相似文献   

10.
制备了一系列具有不同酸性质的β分子筛催化剂, 通过固体核磁共振(NMR)探针分子技术对其酸性质进行了表征, 并考察了其催化葡萄糖转化为乙酰丙酸甲酯的性能. 吸附三甲基磷的31P NMR实验结果表明, 含有骨架Sn以及Al原子的Sn-Al-β催化剂同时具有Br?nsted与Lewis酸性. 通过2-13C-丙酮探针分子区分出 3种酸强度的Br?nsted酸位, 其中一种酸强度接近“超强酸”, 可能是由于空间邻近的Br?nsted酸位和Lewis酸位发生协同作用产生的. 葡萄糖转化为乙酰丙酸甲酯的催化反应结果表明, 相比于分别只含有Lewis酸位和Br?nsted酸位的Sn-β和Al-β样品以及两者的物理混合样品, Sn-Al-β分子筛催化剂具有高催化活性与产物选择性, 这主要是由于Br?nsted酸位和Lewis酸位的协同作用产生了强Br?nsted酸位, 这种强Br?nsted酸位进一步导致了更高的催化活性.  相似文献   

11.
In this paper a new scheme was proposed to calculate the intramolecular hydrogen-bonding energies in peptides and was applied to calculate the intramolecular seven-membered ring N-H...O=C hydrogen-bonding energies of the glycine and alanine peptides. The density-functional theory B3LYP6-31G(d) and B3LYP6-311G(d,p) methods and the second-order Moller-Plesset perturbation theory MP26-31G(d) method were used to calculate the optimal geometries and frequencies of glycine and alanine peptides and related structures. MP26-311++G(d,p), MP26-311++G(3df,2p), and MP2/aug-cc-pVTZ methods were then used to evaluate the single-point energies. It was found that the B3LYP6-31G(d), MP26-31G(d), and B3LYP6-311G(d,p) methods yield almost similar structural parameters for the conformers of the glycine and alanine dipeptides. MP2/aug-cc-pVTZ predicts that the intramolecular seven-membered ring N-H...O=C hydrogen-bonding strength has a value of 5.54 kcal/mol in glycine dipeptide and 5.73 and 5.19 kcal/mol in alanine dipeptides, while the steric repulsive interactions of the seven-membered ring conformers are 4.13 kcal/mol in glycine dipeptide and 6.62 and 3.71 kcal/mol in alanine dipeptides. It was also found that MP26-311++G(3df,2p) gives as accurate intramolecular N-H...O=C hydrogen-bonding energies and steric repulsive interactions as the much more costly MP2/aug-cc-pVTZ does.  相似文献   

12.
Acidity of the oxidic molybdenum catalysts supported on mixed ZrO2-SiO2 and ZrO2-Al2O3 carriers was investigated by Fourier transform infrared spectroscopy of pyridine adsorption. Deposition of molybdenum on ZrO2-SiO2 and ZrO2-Al2O3 supports leads to formation of surface Br?nsted acid sites. The number of the Br?nsted and Lewis acid sites in supported-molybdenum catalysts depends on both the ZrO2 content and the type of the support. With increasing ZrO2 content, the Lewis acid sites increase for both series of catalysts. The Br?nsted acid sites are higher for Mo/ZrO2-SiO2 samples compared to those for Mo/ZrO2-Al2O3 and also increase with zirconia.  相似文献   

13.
Multinuclear solid-state NMR techniques and DFT quantum chemical calculations were employed to investigate the detailed structure of acid sites on the BF3/gamma-Al2O3 alkylation catalyst. The NMR experiment results indicate that gaseous BF3 is able to react with the hydroxyl groups present on the surface of gamma-Al2O3, leading to the formation of new Br?nsted and Lewis acid sites. The 1H/11B and 1H/27Al TRAPDOR (TRAnsfer of Population in DOuble Resonance) experiments suggest that the 3.7 ppm signal in 1H NMR spectra of the BF3/gamma-Al2O3 catalyst is due to a bridging B-OH-Al group that acts as a Br?nsted acid site of the catalyst. On the other hand, a Lewis acid site on the surface of the catalysts, as revealed by 31P MAS and 31P/27Al TRAPDOR NMR of adsorbed trimethylphosphine, is associated with three-coordinate -OBF2 species. 13C NMR of adsorbed 2-13C-acetone indicates that the Br?nsted acid strength of the catalyst is slightly stronger than that of zeolite HZSM-5 but still weaker than that of 100% H2SO4, which is in good agreement with theoretical prediction. In addition, DFT calculations also reveal the detailed structure of various acid sites formed on the BF3/gamma-Al2O3 catalyst and the interaction of probe molecules with these sites.  相似文献   

14.
A CuY zeolite prepared by liquid phase ion exchange was characterized by X-ray photoelectron spectroscopy, pyridine in situ Fourier transform infrared (in situ FTIR) spectroscopy, and ammonia temperature programmed desorption. The effect of cyclohexene on the adsorption of thiophene over the prepared CuY zeolite was explored by in situ FTIR. In particular, the role of the zeolite's Br?nsted acidity was investigated in the adsorption process. The results show that the percentage of Cu+ on the surface of the CuY zeolite can reach 77%. The surface acidity of the CuY zeolite mainly comprises medium and strong Br?nsted acidity and Lewis acidity. According to the adsorption results, cyclohexene negatively influences thiophene adsorption on the Br?nsted or Lewis acid sites in CuY by competitive adsorption. Although polymerization of thiophene and cyclohexene can occur easily on the HY or REY zeolites, the presence of Br?nsted acids in the CuY zeolite was not sufficient to polymerize either thiophene or cyclohexene. This difference may be caused by an anti-synergistic effect between the Cu ions of the CuY zeolite and neighboring Br?nsted acid sites, the result of which inhibits the polymerization of adsorbed thiophene and cyclohexene.  相似文献   

15.
Modes of adsorption of water dimer on H-ZSM-5 and H-Faujasite (H-FAU) zeolites have been investigated by a quantum embedded cluster approach, using the hybrid B3LYP density functional theory. The results indicate that there are two possible adsorption pathways, namely the stepwise process where only one water binds strongly to the (-O)3-Al-O(H) tetrahedral unit while the other weakly binds to the zeolite framework and the concerted process where both water molecules form a large ring of hydrogen-bonding network with the Br?nsted proton and an oxygen framework. With inclusion of the effects of the Madelung potential from the extended zeolite framework, for adsorption on H-ZSM-5 zeolite, both the neutral and ion-pair complexes exist with adsorption energies of -15.13 and -14.73 kcal/mol, respectively. For adsorption on the H-FAU, only the ion-pair complex exists with the adsorption energy of -14.63 kcal/mol. Our results indicate that adsorption properties depend not only on the acidity of the Br?nsted acidic site but also on the topology of the zeolite framework, such as on the spatial confinement effects which lead to very different adsorption structures for the ion-pair complexes in H-ZSM-5 and H-FAU, even though their adsorption energies are quite similar. Our calculated vibrational spectra for these ion-pair complexes support previous experimental IR interpretations.  相似文献   

16.
The adsorption of ammonia at various active centers at the outer and inner surfaces of mordenite, involving Br?nsted acid (BA) sites, terminal silanol groups, and Lewis sites has been investigated using periodic ab initio density-functional theory. It is shown that ammonia forms an ammonium ion when adsorbed at strong BA sites. The calculated adsorption energies for different BA sites vary in the interval from 111.5 to 174.7 kJ/mol depending on the local environment of the adduct. The lowest adsorption energy is found for a monodentate complex in the main channel, the highest for a tetradentate configuration in the side pocket. At weak BA sites such as terminal silanol groups or a defect with a BA site in a two-membered ring ammonia is H bonded via the N atom. Additional weak H bonds are formed between H atoms of ammonia and O atoms of neighboring terminal silanol groups. The calculated adsorption energies for such adducts range between 61.7 and 70.9 kJ/mol. The interaction of ammonia with different Lewis sites is shown to range between weak (DeltaE(ads)=17.8 kJ/mol) and very strong (DeltaE(ads)=161.7 kJ/mol), the strongest Lewis site being a tricoordinated Al atom at the outer surface. Our results are in very good agreement with the distribution of desorption energies estimated from temperature-programmed desorption (TPD) and microcalorimetry experiments, the multipeaked structure of the TPD spectra is shown to arise from strong and weak Br?nsted and Lewis sites. The vibrational properties of the adsorption complexes are investigated using a force-constant approach. The stretching and bending modes of NH(4) (+) adsorbed to the zeolite are strongly influenced by the local environment. The strongest redshift is calculated for the asymmetric stretching mode involving the NH group hydrogen bonded to the bridging O atom of the BA site, the shift is largest for a monodentate and smallest for a tetradentate adsorption complex. The reduced symmetry of the adsorbate also leads to a substantial splitting of the stretching and bending modes. In agreement with experiment we show that the main vibrational feature which differentiates coordinatively bonded ammonia from a hydrogen-bonded ammonium ion is the absence of bending modes above 1630 cm(-1) and in the region between 1260 and 1600 cm(-1), and a low-frequency bending band in the range from 1130 to 1260 cm(-1). The calculated distribution of vibrational frequencies agrees very well with the measured infrared adsorption spectra. From the comparison of the adsorption data and the vibrational spectra we conclude that due to the complex adsorption geometry the redshift of the asymmetric stretching is a better measure of the acidity of an active sites than the adsorption energy.  相似文献   

17.
The effect of addition of titania to silica was examined by various characterization techniques such as FT-IR, BET surface area, surface acid strength/acid sites by the Hammett indicator method and Br?nsted/Lewis acid sites by pyridine adsorbed IR study. Ti-O-Si bond is formed in case of TiO2-SiO2 sample, as observed from FT-IR data. Acid strength, surface acid sites, and rate constant for esterification of acetic acid are increased with Ti-O-Si bonding and sulfate impregnation. Both Br?nsted and Lewis acid sites are responsible for catalysing the esterification reaction. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
(1)H and variable-temperature (15)N NMR techniques have been used to study the effect of the gradual alumination of SBA-15 on the structure and adsorption properties of this mesoporous material. The interpretation of experimental spectra suggests that aluminum chlorhydrol most effectively reacts with silica surfaces in the confinement of the cavities of rough mesopore walls, instead of forming a homogeneous aluminum film. This first leads to a gradual filling of the cavities and finally results in aluminum islands on the inner surfaces of mesopores. In the sample with a Si/Al atomic ratio of 4.1, up to half of the inner surface area of the mesopores is covered with aluminum. The alumination produces Br?nsted acid sites attributed to silanol groups interacting with aluminum but does not affect the proton-donating ability of isolated silanol groups. At high Si/Al ratios, the surface contains only one type of Lewis site attributed to tetracoordinated aluminum. At lower Si/Al ratios, Lewis acid sites with a lower electron-accepting ability appear, as attributed to pentacoordinated aluminum. The numerical values of the surface densities of all chemically active sites have been estimated after annealing at 420 and 700 K. We were surprised to observe that gaseous nitrogen can occupy Lewis acid sites and hinder the interaction of the aluminum with any other electron donor. As a result, aluminated surfaces saturated with nitrogen do not exhibit any Br?nsted or Lewis acidity. At room temperature, it takes days before pyridine replaces nitrogen at the Lewis acid sites.  相似文献   

19.
The role that silica surface could have played in prebiotic chemistry as a catalyst for peptide bond formation has been addressed at the B3LYP/6-31+G(d,p) level for a model reaction involving glycine and ammonia on a silica cluster mimicking an isolated terminal silanol group present at the silica surface. Hydrogen-bond complexation between glycine and the silanol is followed by the formation of the mixed surface anhydride Si(surf)-O-C(=O)-R, which has been suggested in the literature to activate the C=O bond towards nucleophilic attack by a second glycine molecule, here simulated by the simpler NH3 molecule. However, B3LYP/6-31+G(d,p) calculations show that formation of the surface mixed anhydride Si(surf)-O-C(=O)-R is disfavoured (delta(r)G298 approximately 6 kcal mol(-1)), and that the surface bond only moderately lowers the free-energy barrier of the nucleophilic attack responsible for peptide bond formation (deltaG298(double dagger) approximately 48 kcal mol(-1)) in comparison with the uncatalysed reaction (deltaG298(double dagger) approximately 52 kcal mol(-1)). A further decrease of the free-energy barrier of peptide bond formation (deltaG298(double dagger) approximately 41 kcal mol(-1)) is achieved by a single water molecule close to the reaction centre acting as a proton-transfer helper in the activated complex. A possible role of strained silica surface defects on the formation of the surface mixed anhydride Si(surf)-O-C(=O)-R has also been addressed.  相似文献   

20.
Proton-coupled electron transfer (PCET) is an elementary chemical reaction crucial for biological oxidoreduction. We perform quantum chemical calculations to study the direct and water-mediated PCET between two stacked tyrosines, TyrO(?) + TyrOH → TyrOH + TyrO(?), to mimic a key step in the catalytic reaction of class Ia ribonucleotide reductase (RNR). The energy surfaces of electronic ground and excited states are separated by a large gap of ~20 kcal mol(-1), indicative of an electronically adiabatic transfer mechanism. In response to chemical substitutions of the proton donor, the energy of the transition state for direct PCET shifts by exactly half of the change in energetic driving force, resulting in a linear free energy relation with a Br?nsted slope of ?. In contrast, for water-mediated PCET, we observe integer Br?nsted slopes of 1 and 0 for proton acceptor and donor modifications, respectively. Our calculations suggest that the π-stacking of the tyrosine dimer in RNR results in strong electronic coupling and adiabatic PCET. Water participation in the PCET can be identified perturbatively in a Br?nsted analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号