首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The luminescence and luminescence excitation spectra of CdSe/ZnSe quantum dots are studied in a set of double quantum wells with the ZnSe barrier of width 14 nm, the same amount of a deposited CdSe layer forming a deep well and shallow wells with different depths. It is found that for a certain relation between the depths of shallow and deep wells in this set, conditions are realized under which the exciton channel in the luminescence excitation spectrum of a shallow well dominates in the region of kinetic exciton energies exceeding 10 longitudinal optical phonons above the bottom of the exciton band of the ZnSe barrier. A model is developed for the transfer of electrons, holes, and excitons between the electronic states of shallow and deep quantum wells separated by wide enough barriers. It is shown that the most probable process of electronic energy transfer between the states of shallow and deep quantum wells is indirect tunneling with the simultaneous excitation of a longitudinal optical phonon in the lattice. Because the probability of this process for single charge carriers considerably exceeds the exciton tunneling probability, a system of double quantum wells can be prepared in which, in the case of weak enough excitation, the states of quantum dots in shallow quantum wells will be mainly populated by excitons, which explains experimental results obtained.  相似文献   

2.
Photoluminescence of CdTe nanocrystals (NC) is excited resonantly in the lowest energy absorption peak. The spectrum shows a luminescence line shifted to a lower energy and acoustical and optical phonon replica. The Stokes shift between the luminescence and excitation lines is attributed to the electron-hole exchange energy in the nanocrystal. By tuning the laser line inside the absorption peak, we are able to measure the Stokes shift as a function of the excitation energy. Calculation of the absorption gap and the Stokes shift is done in a tight-binding theory. It allows us to determine the radius R of NC excited at a given wavelength and to compare the experimental and theoretical values of the exchange energy as a function of R. A very good agreement is obtained. The observed size dependence of the acoustical phonon mode energy provides a further confirmation of our analysis.  相似文献   

3.
The low-temperature photostimulated activation of sensitized anti-Stokes luminescence in heterogeneous systems based on AgCl(I) microcrystals with adsorbed organic dye molecules and their aggregates is investigated. It is shown that the observed considerable (by more than an order of magnitude) enhancement of the intensity of this luminescence is caused by the formation of silver atoms and few-atom clusters on the surface of AgCl(I) microcrystals, which increase the efficiency of a two-quantum excitation of sensitized anti-Stokes luminescence by optical radiation in the range 630–730 nm with the flux density 1013–1015 quantum cm?2s?1. Analysis of all the experimental results indicates that the excitation mechanism of anti-Stokes luminescence is based on successive electron transfer or electron-excitation energy transfer from a dye molecule to an atomic-molecular dispersive silver center.  相似文献   

4.
The phonon heat conductivity in ZnSe: Ni and ZnS: Ni compounds is investigated. The temperature dependences of the heat conductivity coefficient for these crystals are measured by the method of stationary heat flux. It is found that the heat conductivity exhibits minima in the temperature range 15–20 K. It is assumed that the quasi-resonant behavior of the low-temperature heat conductivity is associated with the umklapp processes due to phonon scattering by anharmonic vibration modes of the cluster.  相似文献   

5.
In this work, we have studied the inter- and intra-subband scattering of hot electrons in quantum wells using the hot electron-neutral acceptor luminescence technique. We have observed direct evidence of the emission of confined optical phonons by hot electrons excited slightly above the n=2 subband in GaAs/Al0.37Ga0.63As quantum wells. Scattering rates of photoexcited electrons via inter- and intra-subband LO phonon emission were calculated based on the dielectric continuum model. We found that, for wide wells with the Al composition of our experiments, both the calculated and experimental results suggest that the scattering of the electrons is dominated by the confined LO phonon mode. In the calculations, scatterings among higher subbands are also dominated by the same type of phonon at well width of 10 nm.  相似文献   

6.
The “exciton gas-plasma” transition (the Mott transition) in a Si0.93Ge0.07/Si thin quantum well is investigated using low-temperature photoluminescence. It is demonstrated that this transition is smooth and occurs in the concentration range from approximately 6 × 1010 to 1.2 × 1012 cm?2. At a temperature of 23 K and excitation densities of higher than 10 W/cm2, the shape and location of the luminescence line associated with the electron-hole plasma remain unchanged with an increase in the pump density. This can indicate the occurrence of an “electron-hole gas-liquid” transition. It is shown that, in the spectrum of the quantum well, the luminescence of boron-bound excitons dominates at liquid-helium temperatures and low excitation densities, whereas the free-exciton luminescence dominates at temperatures above 10 K. The influence of the homogeneous and inhomogeneous broadening on the electron-hole plasma and exciton luminescence is discussed.  相似文献   

7.
We perform experimental and theoretical studies of the electronic structure and relaxation processes in pyramid shaped InAs/GaAs quantum dots (QDs), grown by molecular beam epitaxy in the Stranski-Krastanow growth mode. Structural properties are characterized with plan view and cross section transmission electron microscopy.Finite difference calculations of the strain and the 3D Schrödinger equation, taking into account piezoelectric and excitonic effects, agree with experimental results on transition energies of ground and excited states, revealed in luminescence and absorption spectra. We find as relative standard deviation of the size fluctuation ξ=0.04; the pyramid shape fluctuates between {101} and {203} side facets.Carrier capture into the QD ground state after carrier excitation above barrier is a very efficient process. No luminescence from excited states is observed at low excitation density. Energy relaxation processes in the zero-dimensional energy states are found to be dominated by phonon energy selection rules. However, multi-phonon emission (involving GaAs barrier, InAs wetting layer, InAs QD and interface modes) allows for a large variety of relaxation channels and thus a phonon bottleneck effect does not exist here.  相似文献   

8.
The luminescence spectra of GaAs/AlGaAs quantum wells (QWs) with low-density quasi-two-dimensional electron and hole channels were studied. It was demonstrated that, at temperatures below some critical value (T c ~30 K) and for an excitation power lying in a certain temperature-dependent range, two metastable charge states with two-dimensional charge densities differing in both magnitude and sign can occur in the system under the same conditions. The obtained experimental data agree well with the mathematical model allowing for the transfer of photoexcited carriers to the barrier followed by their tunneling into QW.  相似文献   

9.
A broad charge transfer band is observed in the photoluminescence excitation (PLE) spectrum of the 2.5 μ Ni2+ luminescence in ZnSe : Ni. This band lies above the highest energy d-d excitation bands and exhibits a ZPL at 1.8163 eV and LO(#38;0lambda;) phonon replicas at higher energy. In contrast, PLE spectra of Co2+ luminescence in ZnSe:Co contain only d-d excitation bands. The charge transfer band in ZnSe:Ni is interpreted as evidence for bound exciton formation at the Ni site. The recombination energy of this exciton is transferred efficiently to the excited d-band states of the Ni ion, leading to characteristic Ni2+d-d luminescence.  相似文献   

10.
High-resolution spectroscopy in the mid-infrared spectral range is used to study electronic transitions between size-quantization subbands in stepped quantum wells under picosecond interband excitation. The contributions from intersubband and intrasubband absorption of light are separated by using the difference in time profiles of the absorption coefficient for these cases. For stepped quantum wells, spontaneous interband luminescence and superluminescence are studied for different excitation levels. For structures with quantum dots, the intraband absorption spectra for n-and p-type structures and the spectra of photoinduced intraband absorption and emission (for polarized radiation) for undoped structures are studied.  相似文献   

11.
A magnon–phonon interaction model is developed on the basis of two-dimensional square Heisenberg ferromagnetic system. By using Matsubara Green function theory transverse acoustic phonon excitation is studied and transverse acoustic phonon excitation dispersion curves is calculated on the main symmetric point and line in the first Brillouin zone. On line Σ it is found that there is hardening for transverse acoustic phonon on small wave vector zone (nearby point Γ), there is softening for transverse acoustic phonon on the softening zone and there is hardening for transverse acoustic phonon near point M. On line Δ it is found there is no softening and hardening for transverse acoustic phonon. On line Z it is found that there is softening for transverse acoustic phonon on small wave vector zone (nearby point X) and there is hardening for transverse acoustic phonon nearby point M. The influences of various parameters on transverse acoustic phonon excitation are also explored and it is found that the coupling of the magnon–phonon and the spin wave stiffness constant play an important role for the softening of transverse acoustic phonon.  相似文献   

12.
This paper reports on the results of investigations of the spontaneous and stimulated luminescence in AlGaN heterostructures with a single quantum well and a high Al content (up to ~80 mol % in barrier layers), which were grown by plasma assisted molecular beam epitaxy (PAMBE) on c-sapphire substrates. It has been demonstrated that the stimulated emission occurs in the mid-ultraviolet range of the spectrum at wavelengths of 259, 270, and 289 nm with threshold excitation power densities of 1500, 900, and 700 kW/cm2, respectively. It has been shown that there exists a possibility of TE polarization (Ec) of both stimulated and spontaneous luminescence down to wavelengths of 259 nm.  相似文献   

13.
Luminescence spectra of interwell excitons in GaAs/AlGaAs double quantum wells with electric-field-tilted bands (n-i-n) structures were studied. In these structures the electron and the hole in the interwell exciton are spatially separated between neighboring quantum wells by a narrow AlAs barrier. Under resonant excitation by circularly polarized light the luminescence line of the interwell excitons exhibited appreciable narrowing as their concentration increased and the degree of circular polarization of the photoluminescence increased substantially. Under resonant excitation by linearly polarized light the alignment of the interwell excitons increased as a threshold process with increasing optical pumping. By analyzing time-resolved spectra and the kinetics of the photoluminescence intensity under pulsed excitation it was established that under these conditions the rate of radiative recombination increases substantially. The observed effect occurs at below-critical temperatures and is interpreted in terms of the collective behavior of the interwell excitons. Studies of the luminescence spectra in a magnetic field showed that the collective exciton phase is dielectric and in this phase the interwell excitons retain their individual properties.  相似文献   

14.
The spectra of resonant light scattering by ZnTe quantum wires have been measured at excitation energies of 2.18–2.72 eV. The quantum wires have been grown on Si(100) and GaAs(100) substrates by molecular beam epitaxy. The effect of outgoing resonance with the electron transition energy E 0 on the intensity of phonon lines of the Stokes spectrum and on the intensity ratio of the Stokes and anti-Stokes spectral lines has been studied. The energy E 0 has been determined in ZnTe and ZnMgTe quantum wires from the edge luminescence spectra.  相似文献   

15.
Theoretical investigation of deformation waves generation in the process of ballistic phonon heat-pulse propagation is presented. The regime of synchronous excitation of deformation pulse in the zone localized at the moving front of nonstationary phonon flux is forecast.  相似文献   

16.
The dynamics of intersubband relaxation in GaAs quantum wells and the role of hot carriers and the phonon distributions have been investigated using two different optical techniques with femtosecond resolution: 1) time-resolved photoluminescence and 2) pump and probe experiments. The (2→1) intersubband relaxation times have been measured as functions of well widths (100Å < Lwell < 220Å), under different experimental conditions (15K < Tlattice < 300K, and 1×1010 cm-2 < excitation densities < 1×1012 cm-2). The electron intersubband relaxation time is deduced from the decay time of the n=2 well luminescence (or differential transmission) intensity. For thin wells (<150Å), a fast intersubband (2→1) relaxation time ≤ 3 ps has been measured. For thicker wells, the measured decay times are found to be critically dependent on the excitation conditions (vary from 5 ps to 40 ps). The well width dependence of the intersubband relaxation time does not show the strong dependence (2 orders of magnitude) predicted theoretically for electron-LO phonon scattering. Our results show that the hot phonon populations and the slow carrier cooling rate limit the observation of subpicosecond relaxation time. For thick well widths, our results also suggest that hot carriers effects play an important role in the intersubband relaxation mechanisms.  相似文献   

17.
Resonant Raman scattering of optical phonons in self-assembled quantum dots   总被引:1,自引:0,他引:1  
We have investigated the carrier relaxation mechanism in InGaAs/GaAs quantum dots by photoluminescence excitation (PLE) spectroscopy. Near-field scanning optical microscope successfully shows that a PLE resonance at a relaxation energy of 36 meV can be seen in all single-dot luminescence spectra, and thus can be attributed to resonant Raman scattering by a GaAs LO phonon to the excitonic ground state. In addition, a number of sharp resonances observed in single-dot PLE spectra can be identified as resonant Raman features due to localized phonons, which are observed in the conventional Raman spectrum. The results reveal the mechanism for the efficient relaxation of carriers observed in self-assembled quantum dots: the carriers can relax within the continuum states, and make transitions to the excitonic ground state by phonon emission.  相似文献   

18.
We study theoretically the time development of electronic relaxation in quantum dots. We consider the process of relaxation of the state with an electron prepared at the beginning of relaxation in the electronic ground state. We obtain a fast (in picoseconds) increase of electronic population in the excited state. Also, we consider the process of relaxation of an electron from an excited state in the dot. Here we obtain an incomplete depopulation of the electron from the excited state. We compare these results to experiments in which a fast decrease of luminescence is reported during the first period of relaxation after resonant excitation of the ground state. We estimate numerically the role of electron–LO–phonon (Fröhlich's coupling) mechanism in these processes. We show that this effect may be attributed to the influence of multiple scattering of quantum dot electrons on LO phonons. A single-electron two-energy-level quantum dot model is used to demonstrate this effect in an isolated semiconductor quantum dot.  相似文献   

19.
The temperature dependences (5–300 K) of the Raman spectra of E 2g phonons and optical constants in zinc single crystals are measured in the excitation energy range 1.4–2.54 eV. It is found that phonon damping decreases upon an increase in the wavelength of exciting radiation. The obtained results are compared with the dependence of the phonon width on the excitation energy (the probed wave vector of the excitations under investigation), which are presented for the first time for the transition metal osmium, as well as with the calculated electron-phonon renormalization of damping, taking into account the actual distribution of wave vectors.  相似文献   

20.
利用400 nm和800 nm不同波长的低强度飞秒激光,对CdTe和CdTe/CdS核壳量子点溶胶进行激发,研究其稳态和时间分辨荧光性质.800 nm飞秒激光激发下,CdTe和CdTe/CdS核壳量子点产生上转换发光现象,上转换荧光峰与400 nm激发下的荧光峰相比蓝移最多达15 nm,而且蓝移值与荧光量子产率有关.变功率激发确认激发光功率与上转换荧光强度间满足二次方关系,时间分辨荧光的研究表明荧光动力学曲线服从双e指数衰减.提出表面态辅助的双光子吸收模型是低激发强度上转换发光的主要机理.CdTe和CdT 关键词: CdTe量子点 CdTe/CdS核壳量子点 时间分辨荧光 上转换荧光  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号