首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The infrared spectrum of HC15NO an isotopically substituted species of fulminic acid, has been measured in the range 1900-3600 cm−1 at a resolution of 0.003 cm−1 with a Bruker IFS 120 HR interferometer. More than 100 subbands have been assigned. Power series coefficients for these transitions are given. A Coriolis resonance between the levels 01002 (l = 0e) and 01010 (l = 1e) allows normally "forbidden" transitions to occur, some of which were observed and assigned. We correlate transition intensities and energies of the resonance system. Variations in the manifold of nν5 states with excitation of other modes are compared.  相似文献   

2.
Using a Fourier transform spectrometer, we have recorded the spectra of ozone in the region of 4600 cm−1, with a resolution of 0.008 cm−1. The strongest absorption in this region is due to the ν1+ ν2+ 3ν3band which is in Coriolis interaction with the ν2+ 4ν3band. We have been able to assign more than 1700 transitions for these two bands. To correctly reproduce the calculation of energy levels, it has been necessary to introduce the (320) state which strongly perturbs the (113) and (014) states through Coriolis- and Fermi-type resonances. Seventy transitions of the 3ν1+ 2ν2band have also been observed. The final fit on 926 energy levels withJmax= 50 andKmax= 16 gives RMS = 3.1 × 10−3cm−1and provides a satisfactory agreement of calculated and observed upper levels for most of the transitions. The following values for band centers are derived: ν01+ ν2+ 3ν3) = 4658.950 cm−1, ν0(3ν1+ 2ν2) = 4643.821 cm−1, and ν02+ 4ν3) = 4632.888 cm−1. Line intensities have been measured and fitted, leading to the determination of transition moment parameters for the two bands ν1+ ν2+ 3ν3and ν2+ 4ν3. Using these parameters we have obtained the following estimations for the integrated band intensities,SV1+ ν2+ 3ν3) = 8.84 × 10−22,SV2+ 4ν3) = 1.70 × 10−22, andSV(3ν1+ 2ν2) = 0.49 × 10−22cm−1/molecule cm−2at 296 K, which correspond to a cutoff of 10−26cm−1/molecule cm−2.  相似文献   

3.
Oxalyl chloridefluoride (COCl)(COF) exhibits moderately strong discrete absorption in the 3050–3540Å region. The band spectrum has been analyzed as an allowed electronic transition of the planar trans molecule. The most active vibrations are the carbonyl stretching modes ν1′ and ν2′ and the in-plane bending mode ν9. Various other fundamental frequencies in the combining electronic states have been identified. The 000 band is at 28 724.5 cm−1; partial rotational analysis confirms that this band is type C. The appearance of “line” structure in the wings of the band is discussed and an explanation offered. The vibrational and rotational analyses confirm that the transition is under the Cs point group, as expected for a singlet-singlet n → π* type of excitation.  相似文献   

4.
The vibration-rotation spectrum of methyl isocyanide (CH3NC) has been recorded with the aid of a high-resolution Fourier transform spectrometer in the region 1370 to 1560 cm−1 containing the perpendicular band of the fundamental vibration ν6 (species E), the weaker parallel band of the ν3 (A1) fundamental, and the perpendicular combination band ν7 + ν8 (E) enhanced by Fermi resonance with ν6. Sixteen hundred seventy well-resolved lines were assigned to 15 subbands of ν6, 6 subbands of ν3, and 3 subbands of ν7 + ν8. A strong x, y-Coriolis resonance between ν3 and ν6 and Fermi resonance between ν±6 and the E component ν7 + ν8, as well as between ν3 and the A1,2 components ν±7 + ν8, greatly affects the spectrum. Additional weaker anharmonic interaction of ν6 with the ν4 + 2ν28 combination and higher-order rotational interactions connecting the various states were also detected in the spectrum. All of these interactions have been incorporated into a 9 × 9 Hamiltonian matrix used for modeling the upper states of the observed transitions. A set of spectroscopic constants is reported for the upper states of the bands ν3, ν6, and ν7 + ν8 and for ν4 + 2ν28 which reproduces the observed lines with an overall standard deviation of 0.0012 cm−1.  相似文献   

5.
Many radiofrequency resonances corresponding to transitions between the two components of a K-type doublet in H2CO and HDCO have been observed using infrared-radiofrequency double resonance inside a CO2 laser cavity. For strong resonances, additional transitions induced by collisions have also been observed and these provide information on collisional processes. The collision-induced transitions also provide a method for assigning the K doublet frequencies in the ground and v4 = 1 states of H2CO, and in the ground, v5 = 1, and v6 = 1 states of HDCO; the rovibrational transitions pumped by the CO2 laser can therefore be determined. The upper state rotational transitions and the infrared frequencies for the transitions in exact coincidence with the CO2 laser lines provide accurate additional data in the analysis of the conventional infrared spectrum of the ν5 and ν6 bands of HDCO. In addition, the 195-μm far-infrared laser line in HDCO, observed by Dangoisse et al. [J. Quantum Electron. QE-13, 730–731 (1977)] has been assigned as the 246,19→236,18 transition in the v6 = 1 state.  相似文献   

6.
The anisotropic and isotropic components of the ν2, ν5 rotation-vibrational Raman bands of 13CH3F were obtained separately. The two upper states are coupled by a strong second-order Coriolis resonance. The anisotropic spectrum was analyzed by means of a program system due to R. Escribano. A contour simulation and a least-squares fit of 233 assigned transitions yielded values for ν5, ΔA5, ΔA2, and Aζ5a, 5b(z). The 13C shifts of ν2 and ν5 were obtained from the isotropic spectrum.  相似文献   

7.
The semirigid bender Hamiltonian [Bunker and Landsberg, J. Mol. Spectrosc. 67, 374–385 (1977)] is used to fit the rotation-vibration energy level separations in the carbon suboxide molecule C3O2. We allow the CC bond lengths and CCO bond angles to change with the CCC bending angle ρ. A very good fit to the energy levels is obtained and, in particular, the B values are systematically fitted better than when the rigid bender is used. The dependence of the effective CCC bending potential function on the vibrations ν2, ν3, and ν4 is determined, and we find that excitation of ν3 or ν4 raises the barrier to linearity whereas excitation of ν2 lowers it. These results can be understood by considering the ρ dependence of the G-matrix elements. We determine that the barrier to CCC linearity in the zero-point vibrational state is 28 cm−1 but until more data are available for the ν1, ν5, and ν6 vibrations we cannot precisely determine the true barrier. However, it has been previously shown that the barrier is little affected by excitation of ν1 or ν5, and that it is reduced by 10–15 cm−1 by excitation of ν6. From these results we deduce that the barrier to CCC linearity in the true bending potential function is 33 cm−1 with an uncertainty of about 5 cm−1. Thus the equilibrium structure is bent at the central carbon atom; the equilibrium CCC angle is 157°.  相似文献   

8.
Two-photon excited photoluminescence (PL) measurements have been carried out on an individual ZnO tetrapod at low temperature (8 K) using femtosecond laser pulses in the wavelength range of 714–850 nm. Simultaneously PL and second-harmonic generation were observed. The integrated PL intensity excitation spectrum at different two-photon excitation frequencies has eight peaks, which are in good correspondence to the exciton-phonon complexes L1b , L1a , and the free exciton lines B n=3, A n=3, B n=2, A n=2, B n=1, and A n=1 seen in ZnO film. This technique can be used to measure the optical transitions in individual nanostructures, which is very difficult to achieve using the traditional transmission/reflection method.  相似文献   

9.
New measurements are reported for the infrared spectrum of sulfur trioxide, 32S16O3, with resolutions ranging from 0.0015 cm−1 to 0.0025 cm−1. Rovibrational constants have been measured for the fundamentals ν2, ν3, and ν4 and the overtone band 2ν3. Comparisons are made with the earlier high-resolution measurements on SO3, and the high correlation among some of the constants related to the Coriolis coupling of the ν2 and ν4 levels is discussed in order to understand the areas of disagreement with the earlier work. Splittings of some of the levels are observed and the splitting constant for K=3 of the ground state is determined for the first time. Other observed splittings include the K=1 levels of 2ν3 (l=2), the K=2 levels of ν3 and ν4, and the K=3 levels of ν2. The analysis shows that there are level crossings between the l=0 and l=2 states of 2ν3 that allow one to determine the separation of the subband centers for these two states even though access to the l=0 state from the ground state is electric-dipole forbidden. This is a generalized phenomenon that should be found for many other molecules with the same symmetry. The l-type resonance constant, q3, that causes the splitting of the l3=±1, k=±1 levels of ν3 also couples the l3=0 and 2 states of 2ν3.  相似文献   

10.
Two weak stretching bands, ν1 + 3ν3 and 3ν1 + ν3, of the sulfur dioxide molecule have been recorded at high resolution and analyzed for the first time with using a Fourier transform Bruker IFS-120 HR interferometer. About 1000 transitions with Jmax. = 51, , and 900 transitions with Jmax. = 53, have been assigned to the bands ν1 + 3ν3 and 3ν1 + ν3, respectively. Analysis of the recorded spectra was made using the model of isolated vibrational states. Parameters obtained from the fit reproduce the initial experimental ro-vibrational energies with the rms deviation of 0.0006 and 0.0012 cm−1 for the bands, 3ν1 + ν3 and ν1 + 3ν3, respectively. The problem of determination of the intramolecular potential function of SO2 is discussed.  相似文献   

11.
The infrared spectrum of the SiH4 molecule has been recorded between 2040 and 2320 cm−1 using the high-resolution Fourier interferometer of the Laboratoire de Photophysique Moléculaire (Orsay, France). The resolution was 5.4 × 10−3 cm−1. In this region, many lines were previously analyzed and assigned to the ν1/ν3 stretching dyad of 28SiH4, 29SiH4, and 30SiH4 molecules [J. Mol. Spectrosc. 143 (1990) 35]. However, several lines in the spectrum were not assigned. The results obtained in our previous study [J. Mol. Spectrosc. 197 (1999) 307] of the infrared spectrum of 28SiH4, in the bending-stretching tetrad region at 3100 cm−1, enabled us to assign 204 of the observed transitions to hot bands (the ν1 + ν2/ν1 + ν4/ν2 + ν3/ν3 + ν4 bending-stretching tetrad minus the ν2/ν4 bending dyad). These transitions were used to refine the set of the Hamiltonian parameters of the bending-stretching tetrad. The analysis is performed using the tensorial formalism developed in Dijon for tetrahedral molecules and implemented in the STDS software (http://www.u-bourgogne.fr/LPUB/shTDS.html).  相似文献   

12.
13.
This paper is devoted to the third part of the analysis of the very weak absorption spectrum of the 18O3 isotopologue of ozone recorded by CW-Cavity Ring Down Spectroscopy between 5930 and 6900 cm−1. In the two first parts [A. Campargue, A. Liu, S. Kassi, D. Romanini, M.-R. De Backer-Barilly, A. Barbe, E. Starikova, S.A. Tashkun, Vl.G. Tyuterev, J. Mol. Spectrosc. (2009), doi: 10.1016/j.jms.2009.02.012 and E. Starikova, M.-R. De Backer-Barilly, A. Barbe, Vl.G. Tyuterev, A. Campargue, A.W.Liu, S. Kassi, J. Mol. Spectrosc. (2009) doi: 10.1016/j.jms.2009.03.013], the effective operators approach was used to model the spectrum in the 6200–6400 and 5930–6080 cm−1 regions, respectively. The analysis of the whole investigated region is completed by the present investigation of the 6490–6900 cm−1 upper range. Three sets of interacting states have been treated separately. The first one falls in the 6490–6700 cm−1 region, where 1555 rovibrational transitions were assigned to three A-type bands: 3ν2 + 5ν3, 5ν1 + ν2 + ν3 and 2ν1 + 3ν2 + 3ν3 and one B-type band: ν1 + 3ν2 + 4ν3. The corresponding line positions were reproduced with an rms deviation of 18.4 × 10−3 cm−1 by using an effective Hamiltonian (EH) model involving eight vibrational states coupled by resonance interactions. In the highest spectral region – 6700–6900 cm−1 – 389 and 183 transitions have been assigned to the ν1 + 2ν2 + 5ν3 and 4ν1 + 3ν2 + ν3 A-type bands, respectively. These very weak bands correspond to the most excited upper vibrational states observed so far in ozone. The line positions of the ν1 + 2ν2 + 5ν3 band were reproduced with an rms deviation of 7.3 × 10−3 cm−1 by using an EH involving the {(054), (026), (125)} interacting states. The coupling of the (431) upper state with the (502) dark state was needed to account for the observed line positions of the 4ν1 + 3ν2 + ν3 band (rms = 5.7 × 10−3 cm−1).The dipole transition moment parameters were determined for the different observed bands. The obtained set of parameters and the experimentally determined energy levels were used to generate a complete line list provided as Supplementary Materials.The results of the analyses of the whole 5930–6900 cm−1 spectral region were gathered and used for a comparison of the band centres to their calculated values. The agreement achieved for both 18O3 and 16O3 (average difference on the order of 1 cm−1) indicates that the used potential energy surface provides accurate predictions up to a vibrational excitation approaching 80% of the dissociation energy. The comparison of the 18O3 and 16O3 band intensities is also discussed, opening a field of questions concerning the variation of the dipole moments and resonance intensity borrowing by isotopic substitution.  相似文献   

14.
The vibronic couplings of pyrazine-d0 and pyrazine-d4 between the lowest electronic excited states 1B3u(n, π*) and 1B2u(π, π*) through the out-of-plane CH bending vibration ν10a(b1g) have been studied from the Raman, electronic absorption and fluorescence spectra. The isotope effects on the scattering cross section of the ν10a Raman line, the vibrational potential in the 1B3u(n, π*) state and on the frequency change of the ν10a vibration between the ground and the lowest electronic excited states are well explained by conventional Herzberg-Teller coupling mechanism. However, the intensities of the vibronic bands in the electronic absorption and fluorescence spectra are hardly explained with this coupling mechanism.  相似文献   

15.
The temperature dependence of ρxx is studied in the vicinity of the quantum Hall to quantum Hall insulator transition (ν=1→0) in InSb/InAlSb based 2DESs. ρxx displays a symmetric temperature dependence about the transition with on the QH side and on the insulating side. A plot of 1/T0 for successive ν displays power-law divergence with 1/T0∝|ν−νc|−γ,2 with γ=2.2±0.3. This critical behavior in addition to the behavior expected of the quantum transport regime confirms that the QH/QHI transition is indeed a good quantum phase transition.  相似文献   

16.
The infrared spectrum of doubly deuterated methane CH2D2has been recorded in the region from 1900 to 2400 cm−1at almost Doppler-limited resolution by using two high-resolution Fourier transform spectrometers. The vibrational bands observed include 2ν4, ν4+ ν7, 2ν7, ν2, ν8, ν4+ ν9, and ν7+ ν9, which were analyzed by taking into account Coriolis and Fermi interactions among them and also those with ν4+ ν5, ν3+ ν7, and ν5+ ν7. Most of the centrifugal distortion constants were constrained to appropriate values, while the vibrational term value and three rotational constants in each of the seven excited states were adjusted along with Coriolis and Fermi interaction parameters by the least-squares analysis of the observed spectrum. The vibration–rotation interaction constants αsthus determined for the ν2and ν8states were combined with those of other fundamental states already published to calculate the equilibrium C–H distance.  相似文献   

17.
A pair of 1.5 μm semiconductor laser frequency standards have been developed for optical telecommunications use, stabilised to Doppler-free transitions of the ν1 + ν3 and ν1 + ν2 + ν4 + ν5 combination bands of 13C2H2. The Allan deviation σ/f for a laser locked to line P(10) of the former band follows a slope of 1.6 × 10−12τ−1/2, reaching a minimum of 5.7 × 10−14 at τ = 4000 s. The absolute frequencies of 61 lines of the ν1 + ν3 band and 43 lines of the ν1 + ν2 + ν4 + ν5 band, covering the spectral region 1520 nm to 1552 nm, have been measured by use of a combined frequency chain and femtosecond comb, together with a passive optical frequency comb generator. The mean uncertainties for the line frequencies within each band are 1.4 kHz for the ν1 + ν3 band and 1.9 kHz for the ν1 + ν2 + ν4 + ν5 band, representing improvements on the precision of previously published data by factors of 100 and 104, respectively. Improved values of the rotational constant B″ and centrifugal distortion coefficients D″, H″ and L″ of the vibrational ground state are presented.This article is published with the permission of the Controller of HMSO and the Queen’s Printer of Scotland  相似文献   

18.
High-resolution (0.001 cm−1) coherent anti-Stokes Raman scattering (CARS) was used to observe the Q-branch structure of the IR-inactive ν1 symmetric stretching mode of 32S16O3 and its various 18O isotopomers. The ν1 spectrum of 32S16O3 reveals two intense Q-branches in the region 1065–1067 cm−1, with surprisingly complex vibrational–rotational structure not resolved in earlier studies. Efforts to simulate this with a simple Fermi-resonance model involving ν1 and 2ν4 states do not reproduce the spectral detail, nor do they yield reasonable spectroscopic parameters. A more subtle combination of Fermi resonance and indirect Coriolis interactions with nearby states, 2ν4(1=0, ±2), ν24(1=±1), 2ν2(1=0), is suspected and a determination of the location of these coupled states by high-resolution infrared measurements is under way. At medium resolution (0.125 cm−1), the infrared spectra reveal Q-branch features from which approximate band origins are estimated for the ν2, ν3, and ν4 fundamental modes of 32S18O3, 32S18O216O, and 32S18O16O2. These and literature data for 32S16O3 are used to calculate force constants for SO3 and a comparison is made with similar values for SO2 and SO. The frequencies and force constants are in excellent agreement with those obtained by Martin in a recent ab initio calculation.  相似文献   

19.
Experimental line intensities of 1727 transitions arising from nine hot bands in the pentad–dyad system of methane are fitted to first and second order using the effective dipole moment expansion in the polyad scheme. The observed bands are ν3− ν2, ν3− ν4, ν1− ν2, ν1− ν4, 2ν4− ν4, ν2+ ν4− ν2, ν2+ ν4− ν4, 2ν2− ν2, and 2ν2− ν4, and the intensities are obtained from long-path spectra recorded with the Fourier transform spectrometer located at Kitt Peak National Observatory. For the second order model, some of the 27 intensity parameters are not linearly independent, and so two methods (extrapolation and effective parameters) are proposed to model the intensities of the hot bands. In order to obtain stable values for three of these parameters, 1206 dyad (ν4, ν2) intensities are refitted simultaneously with the hot band lines. The simultaneous fits to first and second order lead to rms values respectively of 21.5% and 5.0% for the 1727 hot band lines and 6.5% and 3.0% for the 1206 dyad lines. The band intensities of all 10 pentad–dyad hot bands are predicted in units of cm−2atm−1at 296 K to range from 0.931 (for 2ν4− ν4) to 7.67 × 10−5(for 2ν4− ν2). The total intensities are also estimated to first order for two other hot band systems (octad–pentad and tetradecad–octad) that give rise to weak transitions between 5 and 10 μm.  相似文献   

20.
High-resolution Fourier transform spectra covering the 720-920 cm−1 spectral region have been used to perform a reanalysis of the ν2 band ((010)-(000) vibrational transition) together with the first analysis of the 2ν2 - ν2 hot band of nitrogen dioxide ((020)-(010) vibrational transition). The high-quality spectra show that, for numerous ν2 lines, the hyperfine structure is easily observable in the case of resonances due to the hyperfine Fermi-type operator. By performing a full treatment of the spin-rotation and of the hyperfine operators, a new line list of the ν2 band (positions and intensities) has been generated, and it is in excellent agreement with the experimental spectrum. Also, a thorough analysis of the 2ν2 - ν2 hot band has been performed leading to an extended set of new (020) spin-rotation levels. These levels, together with the {(100), (020), (001)} spin-rotation levels deduced previously from the analysis of the ν1, 2ν2, and ν3 cold bands performed in the 6.3- to 7.5-μm spectral range [A. Perrin, J.-M. Flaud, C. Camy-Peyret. A.-M. Vasserot, G. Guelachvili, A. Goldman, F. J. Murcray, and R. D. Blatherwick, J. Mol. Spectrosc.154, 391-406 (1992)] were least-squares fitted, allowing one to derive a new set of vibrational band centers and rotational, spin-rotation, and interaction constants for the {(l00)(020)(001)} interacting states of 14N 16O2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号