首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 162 毫秒
1.
近年来,半导体纳晶多孔薄膜作为一类重要的纳米结构材料,其光电化学性质及功能特性的研究受到人们广泛关注。由于量子尺寸效应及介电限域效应,它们的光物理、光电化学性质以及电荷传输机理明显异于多晶及单晶体材料。通过简便快捷的涂敷、浸涂或溅射等方法,半导体纳晶多孔薄膜可以在导电衬底上形成。这些薄膜具有高度多孔性、大比表面,易于用有机功能分子或半导体超微粒进行表面修饰[1-2],在太阳能转换[2]、光电子器件或电子变色器件[3]及光催化治理环境污染[4]等方面具有潜在的应用前景。因此,在光电化学、半导体物理及材料科学领域里研究十分活跃。本文采用涂敷及浸涂提拉方法制备了四种具有不同多孔率及比表面的TiO2薄膜电极,并对其晶型、表面形貌微结构及光电化学性能进行了研究。  相似文献   

2.
多孔硅的光电化学特性研究   总被引:6,自引:0,他引:6  
研究了多孔硅的光电化学特性和溶液中的光致电荷转移机一,由P型单晶硅制备的多孔硅具有P型半导体的光电性质,且光电流响应高于单晶硅,由于多孔硅表面态能级对光致电荷的陷阱作用,多孔硅呈现了独特的光电流响应和光致电荷转移性质。  相似文献   

3.
赵响  赵宗彦 《化学进展》2015,27(7):913-934
四元化合物半导体铜锌锡硫(Cu2 ZnSnS4,CZTS)由于其四种组成元素在地壳中丰度非常高且安全无毒,因而成本低廉。CZTS作为直接带隙半导体材料,其吸收光谱与太阳辐射光谱匹配性好、光吸收系数高,具有结构与性质可调可控、光电性能优异等优势,是发展绿色、低成本、高效率和稳定薄膜太阳电池的理想核心材料。近年来,国内外研究者对CZTS的结构与性质、制备工艺、应用尤其是通过结构、成分的调控提高其光电转换效率等方面进行了广泛的研究和探讨。本文对CZTS的结构演变、制备工艺、光电性质与应用等进行综述,重点分析了晶体结构、缺陷、表面与界面、合金化等因素对其光伏性能的影响。同时,对CZTS作为新型能量转换材料在光催化和热电等领域的应用进行了探讨。最后对CZTS目前存在的挑战和今后的研究重点进行总结并展望了将来可能的突破方向。  相似文献   

4.
卤化物钙钛矿由于其独特的光电性质,在薄膜光电子器件领域具有极大潜力1。虽然许多工作都集中在多晶钙钛矿材料上,但单晶钙钛矿比多晶具有更低的缺陷态密度、更好的载流子输运能力和更高的稳定性2,3,可以有有效减少甚至消除载流子输运过程中的散射损失以及在晶界处的非辐射性复合4。采用单晶钙钛矿薄膜作为器件活性层被认为是进一步提高钙钛矿光电子器件性能的理想方案。目前,研究报道的钙钛矿单晶薄膜生长方法主要通过化学气相沉积和溶液空间限制法5,6,然而,所制备的薄膜厚度往往较厚,相应的器件性能也没有多晶薄膜的器件高7,因此,生长高质量的超薄大面积钙钛矿单晶薄膜至关重要。  相似文献   

5.
表面与界面电荷性质是纳米材料制备及其应用中应该考虑的重要问题. 详细了解纳米材料的尺寸与表面电荷性质之间的关系是纳米科学研究中的重要课题. TiO2作为一种宽带隙的半导体材料, 因其具有显著的光电响应、良好的化学稳定性和绿色环保性, 在太阳能转换、光催化杀菌及污染处理等方面有着广泛的用途[1~5].  相似文献   

6.
本文主要按照催化剂与半导体电极二者之间所形成的结的性质, 分析了催化剂对电极表面上进行的光电化学反应可能具有的效应。分析结果表明, 催化光电化学反应(光生少数载流子的反应)的前提是催化剂微粒与“半导体/溶液”界面之间有足够强的相互作用, 因而在光照下催化剂粒子中电子系统的费米能级能达到或趋近光生少数载流子的准费米能级。文中并采用带环的可换旋转园盘电极研究了Au、Ir等金属微粒对在n-TiO_2单晶电极上进行的Ce~(3+)—→Ce~(4+)等光电化学反应的催化机理, 证实了上述分析结果。  相似文献   

7.
陈峰  杨慧  罗玮  王苹  余火根 《催化学报》2017,(12):1990-1998
作为一种无金属的新型半导体材料,g-C_3N_4因具有稳定的物理化学性质及合适的能带结构而引起人们的关注.理论上g-C_3N_4完全满足水分解的电势条件.然而研究发现,g-C_3N_4材料本身的光催化性能并不好,这主要是由于半导体材料被光激发后生成的自由电子和空穴还没来得及到达材料表面参与反应,就在材料体相内发生复合,导致电子参与有效光催化制氢反应的几率大大降低.同时还发现,将少量的贵金属,如Pt,Au,Pd作助催化剂修饰在该半导体表面,其光催化性能明显提高.但由于这些贵金属储量非常稀少,价格昂贵,导致它们的使用受到一定限制.而Ag作为一种价格远低于Pt,Au,Pd的贵金属,也得到了广泛的研究.研究表明,金属Ag储存电子的能力很好,因此可以有效地将半导体上生成的光生电子快速转移到Ag上面去,从而达到电子空穴快速分离的目的.但是在光催化制氢过程中,Ag吸附H~+的能力较弱,致使电子与H~+反应的诱导力较弱,使得Ag释放电子的能力较差.因此可以通过提高Ag表面对H~+的吸附强度,以加速Ag的电子释放,通过表面修饰来提高Ag助剂的光催化活性.研究发现,Ag纳米粒子表面与含硫化合物之间存在很强的亲和力.硫氰根离子(SCN~–)具有很强的电负性,容易吸附溶液中H~+离子,并且也易吸附在Ag纳米粒子的表面.因此可以利用Ag与SCN~–的作用来增强Ag释放电子的能力.本文采用光还原法将Ag沉积在g-C_3N_4半导体材料表面,然后通过在制氢牺牲剂中加入KSCN溶液,利用SCN~-与Ag的亲和力来提高光生电子参与光催化反应的效率.结果表明,在SCN~-存在的情况下,g-C_3N_4/Ag的光催化制氢性能显著提高.当制氢溶液中SCN~–浓度为0.3 mmol L~(–1)时,材料的光催化制氢性能达最大,为3.89μmol h~(–1),比g-C_3N_4/Ag性能提高5.5倍.基于少量的SCN~–就能明显提高g-C_3N_4/Ag材料的光催化性能,我们提出了一个可能性的作用机理:金属银和SCN~-协同作用,即银纳米粒子作为光生电子的捕获和传输的一种有效的电子传递介质,而选择性吸附在银表面的SCN~-作为界面活性位点有效地吸附溶液中的质子以促进产氢反应,二者协同作用,加速了g-C_3N_4-Ag–SCN~-三物种界面之间电荷的传输、分离及界面催化反应速率,有效抑制了g-C_3N_4主体材料光生电子和空穴的复合,因而g-C_3N_4/Ag–SCN复合材料的光催化制氢性能提高.考虑到其成本低、效率高,SCN~–助催化剂有很大的潜力广泛应用于制备高性能的银修饰光催化材料.  相似文献   

8.
在纳米半导体中由于纳米效应(如量子尺寸效应),其电子结构与块体半导体有所不同。进一步地,当纳米半导体与基底和其他组分结合制成器件后,其性质又受到基底或其他组分的影响,这两点导致了基于纳米半导体的光电器件的性能以及相应表征方法也大不相同。将光电流谱、光致发光光谱和紫外可见吸收光谱三种技术有机地结合起来,可以更好地表征纳米半导体的电子性质和光电性能。本文根据纳米半导体材料与电极的电子性质特点及其测量,结合本课题组前期工作,举例介绍三种谱学方法相结合应用于探究光伏电池和电致发光器件的纳米半导体材料的性能,以及纳米半导体材料表面态的表征。  相似文献   

9.
张旭强  吕功煊 《化学进展》2020,32(9):1368-1375
Ⅲ-Ⅴ族半导体材料(如GaAs、InP、GaP等)具有抗辐射性能高、温度特性好、耐高温等特点。相比于其他材料构建的光电催化体系,由这类半导体构成的光电极具有更高的太阳能吸收效率和光电转换效率。然而,大多数Ⅲ-Ⅴ族半导体在水溶液电解质中的物理化学性质很不稳定,导致太阳能驱动分解水性能衰减较快。基于此,本文综述了薄膜保护层在改善Ⅲ-Ⅴ族半导体光电极电化学稳定性方面的主要成就和研究现状,分析总结了获得稳定高效的光电反应界面和分解水效率的策略,探讨了导致材料衰减的原因和相应改善措施,最后展望了薄膜保护策略的未来发展前景。  相似文献   

10.
李娜  许林  孙志霞 《化学进展》2015,27(8):1065-1073
多金属氧酸盐(简称为多酸)作为一种分子型金属氧化物,具有结构的多样性和独特的物理化学性质,在催化、分子基功能材料、分子磁学等领域显示出广泛的应用。特别是近年来,利用多酸作为电子受体去捕获半导体材料中的光生电子,促进电荷分离并且抑制半导体中载流子的复合,从而有效地提高了半导体的光电转换效率,在半导体光电器件和太阳能电池中显示了应用潜力。本文基于我们的研究工作和近期文献,综述了多酸促进半导体光电转换作用的研究进展及其在太阳能电池中的应用,并且对其未来的发展方向进行了展望。  相似文献   

11.
用电活性分子——硬脂酸二茂铁酯L-B膜修饰了薄膜CdSe电极,在单色光650nm光照下用循环伏安法研究修饰的薄膜电极的光电化学性能。研究结果指出经多层L-B膜修饰后,薄膜CdSe电极的,I-V性能和光稳定性都有明显改善。用界面能级关系讨论了硬脂酸二茂铁酯L-B膜在光照的CdSe薄膜/Fe(CN)64-溶液界面起传递电荷的中介作用,加速了界面的电荷转移。  相似文献   

12.
研究了Au修饰的薄膜CdSe电极在多硫溶液中的瞬态光电流行为,测量了界面异相电荷转移,表面电荷复合及光腐蚀反应速度常数KF,KRKc。结合了光电子能谱(XPS)及扫描电镜(SEM)表面分析,对三种不同Au量修饰的薄膜CdSe电极进行界面动力学行为的分析。  相似文献   

13.
Interfacial charge transfer kinetics of the nanocrystalline CdSe thin film electrodes have been studied in sodium polysulfide solutions by intensity modulated photocurrent spectroscopy (IMPS). The interfacial direct and indirect charge transfer and recombination processes were analyzed in terms of the parameters: normalized steady state photocurrents and surface state lifetimes obtained by measuring the IMPS responses under different applied potentials and different solution concentrations. IMPS responses of polycrystalline CdSe thin film electrodes were also presented for comparison.  相似文献   

14.
铬酸还原为铬的阴极过程中,基体表面会生成固相膜,从而出现阴极钝化现象[1-5]。我们在研究铬酸镀浓的电化学行为时,曾证实这种现象[6],本文报导的是对该钝化膜性质的研究结果。  相似文献   

15.
用X射线光电子能谱(XPS)研究了不同含氧气氛中烧结的薄膜CdSe及CdsexTe1-x电极表面,以及薄膜与Ti底基之间的界面。研究中发现,二种薄膜电极的表面形成了CdO,SeO2及TeO2氧化物,与薄膜接触的Ti底基表面上形成了TiO2。用俄歇电子能谱(AES)对在电极表面及Ti表面所生成的氧化层分别进行了深度分析。结果表明,各种氧化物形成的程度有很大的不同,氧化层厚度也存在差异。对影响薄膜电极的光电性能的因素进行了讨论。  相似文献   

16.
采用一步滴涂法在掺氟二氧化锡(FTO)导电玻璃上制备了Bi1-xFexVO4(x=0, 0.05, 0.10, 0.25, 0.40)薄膜, 表征了其结构、 形貌、 光学以及光电化学方面的性质. 结果表明, 掺入Fe后Bi1-xFexVO4薄膜的光电流密度与 BiVO4薄膜相比均有所提高, 其中25% Fe-BiVO4薄膜表现出最优的光电化学性能. 在0.1 mol/L磷酸缓冲溶液(pH=7.0)中, 1.23 V(vs. RHE)电势下25% Fe-BiVO4薄膜的光电流密度为0.50 mA/cm2, 与BiVO4薄膜的0.15 mA/cm2相比提高了3倍多. 结合X射线衍射(XRD)、 拉曼光谱(Raman)和X射线光电子能谱(XPS)表征结果证实Fe3+以FeVO4的形式存在于Bi1-xFexVO4薄膜中, 形成了BiVO4/FeVO4复合物薄膜. 紫外-可见光谱(UV-Vis)结果显示, 所有Bi1-xFexVO4薄膜的禁带宽度均为2.4~2.5 eV. 25% Fe-BiVO4薄膜光电化学性能的提升主要归因于光生载流子转移效率(ηtrans)和分离效率(ηsep)的提高. 能级结构图表明, BiVO4和FeVO4之间可以形成Type Ⅱ型能级结构排列, 可以促进光生载流子的分离与转移, 是25% Fe-BiVO4薄膜光电化学性能提升的内在机理.  相似文献   

17.
用循环伏安法对半导体CdsexTe1-x薄膜电池的光溶解性能进行了研究。在1mol/L KCl溶液中测量光溶解产物的阴极还原特性,考察了在多硫化钠,多硫化钾及铁氰化钾溶液中的光腐蚀行为。用此方法还研究了薄膜电极表面的光刻蚀过程和pH的影响,并用X射线光电子能谱分析光刻进行不同时间后,电极表面发生的变化。  相似文献   

18.
测定了二茂铁衍生物——硬脂酸二茂铁酯L-B膜修饰SnO2电极在Fe(CN)63-/4-溶液中的阻抗性能,用单纯形法求出了等效电路中的元件参数值,计算了电极反应速度常数Ks。从分析SnO2电极修饰不同层的硬脂酸二茂铁酯L-B膜的界面阻抗和电极反应的动力学性能,表明与在固相中研究的硬脂酸二茂铁酯L-B膜的阻抗性能明显不同,在Fe(CN)63-/4-溶液中表现了电活性分子修饰电极的界面阻抗行为,进一步证实了修饰在SnO2电极上的硬脂酸二茂铁酯L-B膜在Fe(CN)63-/4-的氧化还原电极反应过程中,起电荷传递的中介作用。  相似文献   

19.
兼具高光学质量和电化学性能的薄膜光电极难以制备, 限制了光电催化氧化技术在水处理中的的应用. 本文采用原位煅烧法制备了负载在氧化铟锡(ITO)玻璃上的石墨相氮化碳(g-C3N4)薄膜电极, 并通过掺杂K+提高其光电催化氧化性能; 对电极进行了表征, 研究了其光电催化氧化降解水中双氯芬酸钠(DCF)的效率及降解路径. 结果表明, 原位煅烧法能制备出高质量的K+/g-C3N4薄膜光电极, K+的掺杂并未明显改变电极上g-C3N4的晶型、 价态和多孔形貌, 但可以提高ITO玻璃上g-C3N4的负载量, 增强电极对可见光的响应; K+的最佳掺杂浓度为0.002 mol/L, K+/g-C3N4薄膜电极光电催化氧化降解DCF的速率常数是纯g-C3N4薄膜电极的1.86倍; 当初始pH值为4, 电压为1 V, 光源强度为0.96 W/cm2, 反应2 h后水中DCF降解率达到70%. K+/g-C3N4薄膜电极光电催化氧化过程中, 光催化氧化和电化学氧化之间存在协同作用, 两者相互增强, 并提高了反应过程中光生 空穴(h+)和羟基自由基(·OH)浓度, 在这两种活性物质作用下, 水中DCF分别被h+氧化生成咔唑衍生物、 与·OH发生加成反应生成多羟基芳香化合物, 最后开环生成小分子物质.  相似文献   

20.
本文考察了ZnO·WO3悬浮水溶液中污染物SO2的可见光催化氧化并建议通空气处理较高浓度的SO32-扩水溶液。含0.15mol/LSO32-水溶液可见光照2h可将SO32-基本上光催化氧化成SO42-。对这光助SO32-自发氧化反应中可能平行存在的自发、多相催化、光化学和光催化等反应进行实验对比;筛选出克分子比0.5ZnO·WO为最佳掺杂配比;考察了光催化剂热处理、空气流量、pH对光催化活性的影响,得出pH7.5为最佳值;太阳光催化SO32-氧化速率比室内实验更快,展现了利用太阳能于环保的应用前景,对所有实验结果都给以理论解释,并提出一个较详细的反应机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号