首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In this paper, we study the following Eigen-problem {-\frac{∂}{∂x_i}(a_{ij}(x, u)\frac{∂u}{∂x_j}) + \frac{1}{2}a_{iju}(x,u)\frac{∂u}{∂x_i}\frac{∂u}{∂x_j} + h(x)u = μμ\frac{n+2}{n-2} \quad in Ω \qquad (0.1) u = 0 \quad on ∂Ω u > 0 \quad in Ω ⊂ R^n under some assumptions. First. we minimize I(u) = \frac{1}{2}∫_Ωa_{ij}(x, u)\frac{∂u}{∂x_i}\frac{∂u}{∂x_j} + h(x)u² over E_α = {u ∈ H¹_0(Ω); ∫_Ωu^α = 1} ( 2 < α < N = \frac{2n}{n-2}) to give a H¹_0-solution U_α of the perturbation problems of (0.1). Since I is not differentiable in H¹_0(Ω), the key point is the estimate of U_α. Then, we derive local uniform bounds of (U_α) and give a 'bad' solution of (0.1). Last, we remove the singular points of the 'bad' solution to obtain a solution of (0.1), our result is a extension of that of Brezis & Nirenberg.  相似文献   

2.
In this paper, the existence of positive solutions for the mixed boundary problem of quasilinear elliptic equation {-div (|∇u|^{p-2}∇u) = |u|^{p^∗-2}u + f(x, u), \quad u > 0, \quad x ∈ Ω u|_Γ_0 = 0, \frac{∂u}{∂\overrightarrow{n}}|_Γ_1 = 0 is obtained, where Ω is a bounded smooth domain in R^N, ∂Ω = \overrightarrow{Γ}_0 ∪ \overrightarrow{Γ}_1, 2 ≤ p < N, p^∗ = \frac{Np}{N-p}, Γ_0 and Γ_1 are disjoint open subsets of ∂Ω.  相似文献   

3.
We have obtained in this paper the existence of weak solutions to the Cauchy problem for a special system of quasillnear equations with physical interest of the form {\frac{∂}{∂t}(u + qz) + \frac{∂}{∂x}f(u) = 0 \frac{∂z}{∂t} + kφ(u)z = 0 for the assumed smooth function φ(u) by employing the viscosity method and the theory of compensated compactness.  相似文献   

4.
We first consider the initial value problem of nonlinear Schrödinger equation with the effect of dissipation, and prove the existence of global generalized solution and smooth solution as some conditions respectively. Secondly, we disscuss the asymptotic behavior of solution of mixed problem in bounded domain for above equation. Thirdly, we find the “blow up” phenomenon of the solution of mixed problem for equation iu_t = Δu + βf(|u|²)u - i\frac{ϒ(t)}{2}u, \quad x ∈ Ω ⊂ R³, t > 0 i. e. there exists T_0 > 0 such that lim^{t→Γ_0} || ∇u || ²_{L_t(Ω)} = ∞. The main means are a prior estimates on fractional degree Sobolev space, related properties of operator's semigroup and some integral identities.  相似文献   

5.
The present paper studies a continuous casting problem of two phases: \frac{∂H(u)}{∂t} + b (t) \frac{∂H(u)}{∂x} - Δu = 0 \quad in 𝒟¹ (Ω_T) where u is che temperature. H (u) is a maximal monotonic graph. Ω_T = G × (0, T), where G = (0, a) × (0. 1) stands for the ingot. We obtain the existence and the uniqueness of weak solution and the existence of periodic solution for the first boundary problem.  相似文献   

6.
In this paper, we consider the Cauchy problem \frac{∂u}{∂t} = Δφ(u) in R^N × (0, T] u(x,0} = u_0(x) in R^N where φ ∈ C[0,∞) ∩ C¹(0,∞), φ(0 ) = 0 and (1 - \frac{2}{N})^+ < a ≤ \frac{φ'(s)s}{φ(s)} ≤ m for some a ∈ ((1 - \frac{2}{n})^+, 1), s > 0. The initial value u_0 (z) satisfies u_0(x) ≥ 0 and u_0(x) ∈ L¹_{loc}(R^N). We prove that, under some further conditions, there exists a weak solution u for the above problem, and moreover u ∈ C^{α, \frac{α}{2}}_{x,t_{loc}} (R^N × (0, T]) for some α > 0.  相似文献   

7.
ln this paper we are devoted to the free boundary problem {u_t = ΔA(u) \quad (x,t) ∈ G_{r,r} u(x, 0) = φ(x) \quad ∈ G_0 u|_r = 0 (\frac{∂A(u)}{∂x_i}v_i + ψ(x)v_1)|_r = 0, where A'(u) ≥ 0. Under suitable assumptions we obtain the existence and uniqueness of global radial solutions for n =2 and local radial solutions for n ≥ 3.  相似文献   

8.
Consider the degenerate parabolic equation (porous medium equation with gravity term): u_t = (u^m)_{xx} + (u^n)_x, -∞ < x < ∞, t > 0, m > 1 u(x, 0) = u_0(x), -∞ < x < ∞ The main results consist of the estimation of t^∗_i called waiting time, the behavior of pressure V = \frac{m}{m-1}u^{m-1} near a vertical or a nonvertical part of ς_i(t) and a condition of that ς_i(t) is continuously differentiable.  相似文献   

9.
ln this paper we consider the model problem for a second order quasilinear degenerate parabolic equation {D_xG(u) = t^{2N-1}D²_xK(u) + t^{N-1}D_x,F(u) \quad for \quad x ∈ R,t > 0 u(x,0) = A \quad for \quad x < 0, u(x,0) = B \quad for \quad x > 0 where A < B, and N > O are given constants; K(u) =^{def} ∫^u_Ak(s)ds, G(u)=^{def} ∫^u_Ag(s)ds, and F(u) =^{def} ∫^u_Af(s)ds are real-valued absolutely continuous functions defined on [A, B] such that K(u) is increasing, G(u) strictly increasing, and \frac{F(B)}{G(B)}G(u) - F(u) nonnegative on [A, B]. We show that the model problem has a unique discontinuous solution u_0 (x, t) when k(s) possesses at least one interval of degeneracy in [A, B] and that on each curve of discontinuity, x = z_j(t) =^{def} s_jt^N, where s_j= const., j=l,2, …, u_0(x, t) must satisfy the following jump conditions, 1°. u_0(z_j(t) - 0, t) = a_j, u_0 (z_j(t) + 0, t) = b_j, and u_0(z_j(t) - 0, t) = [a_j, b_j] where {[a_j, b_j]; j = 1, 2, …} is the collection of all intervals of degeneracy possessed by k (s) in [A, B], that is, k(s) = 0 a. e. on [a_j, b_j], j = 1, 2, …, and k(s) > 0 a. e. in [A, B] \U_j[a_j, b_j], and 2°. (z_j(t)G(u_0(x, t)) + t^{2N-1}D_xK(u_0(x, t)) + t^{N-1}F(u_0(x, t)))|\frac{s=s_j+0}{s=s_j-0} = 0  相似文献   

10.
In this paper, the author proves the existence and uniqueness of nonnegative solution for the first boundary value problem of uniform degenerated parabolic equation $$\[\left\{ {\begin{array}{*{20}{c}} {\frac{{\partial u}}{{\partial t}} = \sum {\frac{\partial }{{\partial {x_i}}}\left( {v(u){A_{ij}}(x,t,u)\frac{{\partial u}}{{\partial {x_j}}}} \right) + \sum {{B_i}(x,t,u)} \frac{{\partial u}}{{\partial {x_i}}}} + C(x,t,u)u\begin{array}{*{20}{c}} {}&{(x,t) \in [0,T]} \end{array},}\{u{|_{t = 0}} = {u_0}(x),x \in \Omega ,}\{u{|_{x \in \partial \Omega }} = \psi (s,t),0 \le t \le T} \end{array}} \right.\]$$ $$\[\left( {\frac{1}{\Lambda }{{\left| \alpha \right|}^2} \le \sum {{A_{ij}}{\alpha _i}{\alpha _j}} \le \Lambda {{\left| \alpha \right|}^2},\forall a \in {R^n},0 < \Lambda < \infty ,v(u) > 0\begin{array}{*{20}{c}} {and}&{v(u) \to 0\begin{array}{*{20}{c}} {as}&{u \to 0} \end{array}} \end{array}} \right)\]$$ under some very weak restrictions, i.e. $\[{A_{ij}}(x,t,r),{B_i}(x,t,r),C(x,t,r),\sum {\frac{{\partial {A_{ij}}}}{{\partial {x_j}}}} ,\sum {\frac{{\partial {B_i}}}{{\partial {x_i}}} \in \overline \Omega } \times [0,T] \times R,\left| {{B_i}} \right| \le \Lambda ,\left| C \right| \le \Lambda ,\],\[\left| {\sum {\frac{{\partial {B_i}}}{{\partial {x_i}}}} } \right| \le \Lambda ,\partial \Omega \in {C^2},v(r) \in C[0,\infty ).v(0) = 0,1 \le \frac{{rv(r)}}{{\int_0^r {v(s)ds} }} \le m,{u_0}(x) \in {C^2}(\overline \Omega ),\psi (s,t) \in {C^\beta }(\partial \Omega \times [0,T]),0 < \beta < 1\],\[{u_0}(s) = \psi (s,0).\]$  相似文献   

11.
§ 1  Introduction and resultsL et { X,Xi;i≥ 1} be a sequence of i.i.d.random variables,and set Sn= ni=1 Xi,n≥1.Hsu and Robbins[1 ] introduced the conceptof complete convergence.They together withErdos[2 ] proved n≥ 1 P(|Sn|≥εn) <∞ ,ε>0 (1)if and only if EX=0 and EX2 <∞ .L ater,Spitzer[3] proved n≥ 11n P(|Sn|≥εn) <∞ ,ε>0if and only if EX =0 and E|X|<∞ .More generally,it was shown by Baum and Katz[4 ]that,for 0 0 (…  相似文献   

12.
Under the appropriate conditions on u, the generalized solution of the elliptic equation ∫_G {∇v ⋅ A(x, u, ∇u) + vB(x, u, ∇u)}dx = 0, \quad ∀v ∈ {\WW}¹_p(G) ∩ L_∞(G) for which even the natural growth condition p(1 - 1/p^∗) < ϒ < p is permitted, the local and global boundedness of u are proved.  相似文献   

13.
Let Ω be a bounded domain in R^4(n ≥ 4) with smooth boundary ∂Ω. We discuss the existence of nontrivial solutions of the Dirichlet problem {- Δu = a(x) |u|^{4/(a-2)}u + λu + g(x, u), \quad x ∈ Ω u = 0, \quad x ∈ ∂Ω where a(x) is a smooth function which is nonnegative on \overline{Ω} and positive somewhere, λ> 0 and λ ∉ σ(-Δ). We weaken the conditions on a(x) that are generally assumed in other papers dealing with this problem.  相似文献   

14.
In this paper, we study the existence of solutions for the following impulsive fractional boundary-value problem:
$$\begin{aligned} {\left\{ \begin{array}{ll} - \frac{\mathrm{d}}{\mathrm{d}t} \Big (\frac{1}{2} {}_0D_t^{\alpha - 1} ({}_0^c D_t^\alpha u (t) ) - \frac{1}{2} {}_tD_T^{\alpha - 1} ({}_t^c D_T^\alpha u (t)) \Big ) = \lambda u (t) + f (t, u (t)), &{} t \ne t_j, \;\;\text {a.e.}\;\; t \in [0, T],\\ \Delta \Big (\frac{1}{2} {}_0D_t^{\alpha - 1} ({}_0^c D_t^\alpha u (t_j) ) - \frac{1}{2} {}_tD_T^{\alpha - 1} ({}_t^c D_T^\alpha u (t_j)) \Big ) = I_j (u (t_j)), &{} j = 1, 2, \ldots , n,\\ u (0) = u (T) = 0, \end{array}\right. } \end{aligned}$$
where \(\alpha \in (1/2, 1]\), \(0 = t_0< t_1< t_2< \cdots< t_n< t_{n +1} = T\), \(\lambda \) is a parameter and \(f :[0, T] \times {\mathbb {R}} \rightarrow {\mathbb {R}}\) and \(I_j : {\mathbb {R}} \rightarrow {\mathbb {R}}\), \(j = 1, \ldots , n\) are continuous functions and
$$\begin{aligned}&\Delta \left( \frac{1}{2} {}_0D_t^{\alpha - 1} ({}_0^c D_t^\alpha u (t_j) ) - \frac{1}{2} {}_tD_T^{\alpha - 1} ({}_t^c D_T^\alpha u (t_j)) \right) \\&\quad = \frac{1}{2} {}_0D_t^{\alpha - 1} ({}_0^c D_t^\alpha u (t_j^+) ) - \frac{1}{2} {}_tD_T^{\alpha - 1} ({}_t^c D_T^\alpha u (t_j^+) \\&\qquad -\, \frac{1}{2} {}_0D_t^{\alpha - 1} ({}_0^c D_t^\alpha u (t_j^-) ) - \frac{1}{2} {}_tD_T^{\alpha - 1} ({}_t^c D_T^\alpha u (t_j^-) ,\\&\frac{1}{2} {}_0D_t^{\alpha - 1} ({}_0^c D_t^\alpha u (t_j^+) ) - \frac{1}{2} {}_tD_T^{\alpha - 1} ({}_t^c D_T^\alpha u (t_j^+)) \nonumber \\&\quad = \lim _{t \rightarrow t_j^+} \left( \frac{1}{2} {}_0D_t^{\alpha - 1} ({}_0^c D_t^\alpha u (t) ) - \frac{1}{2} {}_tD_T^{\alpha - 1} ({}_t^c D_T^\alpha u (t))\right) ,\\&\frac{1}{2} {}_0D_t^{\alpha - 1} ({}_0^c D_t^\alpha u (t_j^-) ) - \frac{1}{2} {}_tD_T^{\alpha - 1} ({}_t^c D_T^\alpha u (t_j^-)) \\&\quad = \lim _{t \rightarrow t_j^-} \left( \frac{1}{2} {}_0D_t^{\alpha - 1} ({}_0^c D_t^\alpha u (t) ) - \frac{1}{2} {}_tD_T^{\alpha - 1} ({}_t^c D_T^\alpha u (t))\right) . \end{aligned}$$
By using critical point theory and variational methods, we give some new criteria to guarantee that the impulsive problems have at least one solution and infinitely many solutions.
  相似文献   

15.
In this paper we consider the initial-boundary value problem for the higher-order degenerate quasilinear parabolic equation \frac{∂u(x, t)}{∂t} + Σ_{|α|≤M}(-1)^{|α|}D^αA_α(x, t, δu, D^mu) = 0 Under some structural conditions for A_α(x, t, δu, D^mu), existence and uniqueness theorem are proved by applying variational operator theory and Galërkin method.  相似文献   

16.
In this paper, we obtain the existence of positive solution of {-Δu = b(x)(u - λ)^p_+,\qquad x ∈ R^N λ > 0, |∇ u| ∈ L² (R^N),\qquad u ∈ L\frac{2N}{N-2} (R^N) under the assumptions that 1 < p < \frac{N+2}{N-2}, N ≥ 3, b(x) satisfies b(x) ∈ C(R^N), b(x) > 0 in R^N b(x) →_{|x|→∞}b^∞ and b(x) > \frac{4}{p+3}b^∞ for x ∈ R^N  相似文献   

17.
In this paper we study the first and tiie third boundary value problems for the elliptic equation \[\begin{array}{l} \varepsilon \left( {\sum\limits_{i,j = 1}^m {{d_{i,j}}(x)\frac{{{\partial ^2}u}}{{\partial {x_i}\partial {x_j}}} + \sum\limits_{i = 1}^m {{d_i}(x)\frac{{\partial u}}{{\partial {x_i}}} + d(x)u} } } \right) + \sum\limits_{i = 1}^m {{a_i}(x)\frac{{\partial u}}{{\partial {x_i}}} + b(x) + c} \ = f(x),x \in G(0 < \varepsilon \le 1), \end{array}\] as the degenerated operator bas singular points, where \[\sum\limits_{i,j = 1}^m {{d_{i,j}}(x){\xi _i}{\xi _j}} \ge {\delta _0}\sum\limits_{i = 1}^m {\xi _i^2} ,({\delta _0} > 0,x \in G).\] The uniformly valid asymptotic solutions of boundary value problems have been obtained under the condition of \[\sum\limits_{i = 1}^m {{a_i}(x){n_i}(x){|_{\partial G}} > 0,or} \sum\limits_{i = 1}^m {{a_i}(x){n_i}(x){|_{\partial G}} < 0} ,\] where \(n = ({n_1}(x),{n_2}(x), \cdots ,{n_m}(x))\) is the interior normal to \({\partial G}\).  相似文献   

18.
This paper studies tho Cauchy problem of totally characteristic hyperbolic operator (1.1) in Gevrey classes, and obtains the following main result: Under the conditions (I) - (VI), if 1 ≤ s < \frac{σ}{σ-1} (σ is definded by (1.7)). then the Cauchy problem (1.1) is wellposed in B ([0, T], G^s_{L²}, (R^n)); if s = \frac{σ}{σ-1}, then the Cauchy problem (1.1) is wellpooed in B ([0, e], G^{\frac{σ}{σ-1}}_{L²}(R^n)) (where e > 0, small enough).  相似文献   

19.
In this paper initial value problems and nonlinear mixed boundary value problems for the quasilinear parabolic systems below $\[\frac{{\partial {u_k}}}{{\partial t}} - \sum\limits_{i,j = 1}^n {a_{ij}^{(k)}} (x,t)\frac{{{\partial ^2}{u_k}}}{{\partial {x_i}\partial {x_j}}} = {f_k}(x,t,u,{u_x}),k = 1, \cdots ,N\]$ are discussed.The boundary value conditions are $\[{u_k}{|_{\partial \Omega }} = {g_k}(x,t),k = 1, \cdots ,s,\]$ $\[\sum\limits_{i = 1}^n {b_i^{(k)}} (x,t)\frac{{\partial {u_k}}}{{\partial {x_i}}}{|_{\partial \Omega }} = {h_k}(x,t,u),k = s + 1, \cdots N.\]$ Under some "basically natural" assumptions it is shown by means of the Schauder type estimates of the linear parabolic equations and the embedding inequalities in Nikol'skii spaces,these problems have solutions in the spaces $\[{H^{2 + \alpha ,1 + \frac{\alpha }{2}}}(0 < \alpha < 1)\]$.For the boundary value problem with $\[b_i^{(k)}(x,t) = \sum\limits_{j = 1}^n {a_{ij}^{(k)}} (x,t)\cos (n,{x_j})\]$ uniqueness theorem is proved.  相似文献   

20.
We study existence of positive weak solution for a class of $p$-Laplacian problem $$\left\{\begin{array}{ll}-\Delta_{p}u = \lambda g(x)[f(u)-\frac{1}{u^{\alpha}}], &amp; x\in \Omega,\\u= 0 , &amp; x\in\partial \Omega,\end{array\right.$$ where $\lambda$ is a positive parameter and $\alpha\in(0,1),$ $\Omega $ is a bounded domain in $ R^{N}$ for $(N &gt; 1)$ with smooth boundary, $\Delta_{p}u = div (|\nabla u|^{p-2}\nabla u)$ is the p-Laplacian operator for $( p &gt; 2),$ $g(x)$ is $C^{1}$ sign-changing function such that maybe negative near the boundary and be positive in the interior and $f$ is $C^{1}$ nondecreasing function $\lim_{s\to\infty}\frac{f(s)}{s^{p-1}}=0.$ We discuss the existence of positive weak solution when $f$ and $g$ satisfy certain additional conditions. We use the method of sub-supersolution to establish our result.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号