首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
In this paper the initial-boundary-value problems for pseudo-hyperbolic system of quasi-linear equations: {(-1)^Mu_{tt} + A(x, t, U, V)u_x^{2M}_{tt} = B(x, t, U, V)u_x^{2M}_{t} + C(x, t, U, V)u_x^{2M} + f(x, t, U, V) u_x^k(0,t) = ψ_{0k}(t), \quad u_x^k(l,t) = ψ_{lk}(t), \quad k = 0,1,…,M - 1 -u(x,0) = φ_0(x), \quad u_t(x,0) = φ_1(x) is studied, where U = (u_1, u_x,…,u_x^{2M - 1}) V = (u_t, u_{xt},…,u_x^{2M - 1_t}), A, B, C are m × m matrices, u, f, ψ_{0k}, ψ_{1k}, ψ_0, ψ_1 are m-dimensional vector functions. The existence and uniqueness of the generalized solution (in H² (0, T; H^{2M} (0, 1))) of the problems are proved.  相似文献   

2.
ln this paper we consider the model problem for a second order quasilinear degenerate parabolic equation {D_xG(u) = t^{2N-1}D²_xK(u) + t^{N-1}D_x,F(u) \quad for \quad x ∈ R,t > 0 u(x,0) = A \quad for \quad x < 0, u(x,0) = B \quad for \quad x > 0 where A < B, and N > O are given constants; K(u) =^{def} ∫^u_Ak(s)ds, G(u)=^{def} ∫^u_Ag(s)ds, and F(u) =^{def} ∫^u_Af(s)ds are real-valued absolutely continuous functions defined on [A, B] such that K(u) is increasing, G(u) strictly increasing, and \frac{F(B)}{G(B)}G(u) - F(u) nonnegative on [A, B]. We show that the model problem has a unique discontinuous solution u_0 (x, t) when k(s) possesses at least one interval of degeneracy in [A, B] and that on each curve of discontinuity, x = z_j(t) =^{def} s_jt^N, where s_j= const., j=l,2, …, u_0(x, t) must satisfy the following jump conditions, 1°. u_0(z_j(t) - 0, t) = a_j, u_0 (z_j(t) + 0, t) = b_j, and u_0(z_j(t) - 0, t) = [a_j, b_j] where {[a_j, b_j]; j = 1, 2, …} is the collection of all intervals of degeneracy possessed by k (s) in [A, B], that is, k(s) = 0 a. e. on [a_j, b_j], j = 1, 2, …, and k(s) > 0 a. e. in [A, B] \U_j[a_j, b_j], and 2°. (z_j(t)G(u_0(x, t)) + t^{2N-1}D_xK(u_0(x, t)) + t^{N-1}F(u_0(x, t)))|\frac{s=s_j+0}{s=s_j-0} = 0  相似文献   

3.
In this paper we study the existence theorem for solution of the nonlinear degenerate oblique boundary value problems for second order fully nonlinear elliptic equations F(x, u, Du, D²u) = 0 \quad x ∈ Ω, G(x, u, D, u) = 0, \qquad x ∈ ∂Ω where F (x, z, p, r) satisfies the natural structure conditions, G (x, z, q) satisfies G_q ≥ 0, G_x ≤ - G_0 < 0 and some structure conditions, vector τ is nowhere tangential to ∂Ω. This result extends the works of Lieberman G. M., Trudinger N. S. [2], Zhu Rujln [1] and Wang Feng [6].  相似文献   

4.
In the present paper, the following Dirichlet problem and Neumann problem involving the p-Laplacian
((1.λ))
and
((2.λ))
are studied and some new multiplicity results of solutions for systems (1.λ) and (2.λ) are obtained. Moreover, by using the KKM principle we give also two new existence results of solutions for systems (1.1) and (2.1). This Work is supported in part by the National Natural Science Foundation of China (10561011).  相似文献   

5.
We study the initial-boundary value problem for nonlinear nonlocal equations on a finite interval where λ > 0 and pseudodifferential operator is defined by the inverse Laplace transform. The aim of this paper is to prove the global existence of solutions to the inital-boundary value problem (0.1) and to find the main term of the asymptotic representation in the case of the large initial data.  相似文献   

6.
In this paper, the existence of positive solutions for the mixed boundary problem of quasilinear elliptic equation {-div (|∇u|^{p-2}∇u) = |u|^{p^∗-2}u + f(x, u), \quad u > 0, \quad x ∈ Ω u|_Γ_0 = 0, \frac{∂u}{∂\overrightarrow{n}}|_Γ_1 = 0 is obtained, where Ω is a bounded smooth domain in R^N, ∂Ω = \overrightarrow{Γ}_0 ∪ \overrightarrow{Γ}_1, 2 ≤ p < N, p^∗ = \frac{Np}{N-p}, Γ_0 and Γ_1 are disjoint open subsets of ∂Ω.  相似文献   

7.
Let Ω be a bounded domain in R^4(n ≥ 4) with smooth boundary ∂Ω. We discuss the existence of nontrivial solutions of the Dirichlet problem {- Δu = a(x) |u|^{4/(a-2)}u + λu + g(x, u), \quad x ∈ Ω u = 0, \quad x ∈ ∂Ω where a(x) is a smooth function which is nonnegative on \overline{Ω} and positive somewhere, λ> 0 and λ ∉ σ(-Δ). We weaken the conditions on a(x) that are generally assumed in other papers dealing with this problem.  相似文献   

8.
ln this paper we are devoted to the free boundary problem {u_t = ΔA(u) \quad (x,t) ∈ G_{r,r} u(x, 0) = φ(x) \quad ∈ G_0 u|_r = 0 (\frac{∂A(u)}{∂x_i}v_i + ψ(x)v_1)|_r = 0, where A'(u) ≥ 0. Under suitable assumptions we obtain the existence and uniqueness of global radial solutions for n =2 and local radial solutions for n ≥ 3.  相似文献   

9.
In this paper, we study the following Eigen-problem {-\frac{∂}{∂x_i}(a_{ij}(x, u)\frac{∂u}{∂x_j}) + \frac{1}{2}a_{iju}(x,u)\frac{∂u}{∂x_i}\frac{∂u}{∂x_j} + h(x)u = μμ\frac{n+2}{n-2} \quad in Ω \qquad (0.1) u = 0 \quad on ∂Ω u > 0 \quad in Ω ⊂ R^n under some assumptions. First. we minimize I(u) = \frac{1}{2}∫_Ωa_{ij}(x, u)\frac{∂u}{∂x_i}\frac{∂u}{∂x_j} + h(x)u² over E_α = {u ∈ H¹_0(Ω); ∫_Ωu^α = 1} ( 2 < α < N = \frac{2n}{n-2}) to give a H¹_0-solution U_α of the perturbation problems of (0.1). Since I is not differentiable in H¹_0(Ω), the key point is the estimate of U_α. Then, we derive local uniform bounds of (U_α) and give a 'bad' solution of (0.1). Last, we remove the singular points of the 'bad' solution to obtain a solution of (0.1), our result is a extension of that of Brezis & Nirenberg.  相似文献   

10.
We study the global in time existence of small classical solutions to the nonlinear Schrödinger equation with quadratic interactions of derivative type in two space dimensions $\left\{\begin{array}{l@{\quad}l}i \partial _{t} u+\frac{1}{2}\Delta u=\mathcal{N}\left( \nabla u,\nabla u\right),&;t >0 ,\;x\in {\bf R}^{2},\\ u\left( 0,x\right) =u_{0} \left( x\right),&;x\in {\bf R}^{2}, \end{array}\right.\quad\quad\quad\quad\quad\quad (0.1)$ where the quadratic nonlinearity has the form ${\mathcal{N}( \nabla u,\nabla v) =\sum_{k,l=1,2}\lambda _{kl} (\partial _{k}u) ( \partial _{l}v) }We study the global in time existence of small classical solutions to the nonlinear Schr?dinger equation with quadratic interactions of derivative type in two space dimensions
$\left\{{l@{\quad}l}i \partial _{t} u+\frac{1}{2}\Delta u=\mathcal{N}\left( \nabla u,\nabla u\right),&t >0 ,\;x\in {\bf R}^{2},\\ u\left( 0,x\right) =u_{0} \left( x\right),&x\in {\bf R}^{2}, \right.\quad\quad\quad\quad\quad\quad (0.1)$\left\{\begin{array}{l@{\quad}l}i \partial _{t} u+\frac{1}{2}\Delta u=\mathcal{N}\left( \nabla u,\nabla u\right),&t >0 ,\;x\in {\bf R}^{2},\\ u\left( 0,x\right) =u_{0} \left( x\right),&x\in {\bf R}^{2}, \end{array}\right.\quad\quad\quad\quad\quad\quad (0.1)  相似文献   

11.
In this paper, we study the existence and uniqueness of mild solutions to a possibly degenerate elliptic partial differential equation in Hilbert spaces. Our aim is, in the case in which ψ(·, 0, 0) is bounded, to drop the assumptions on the size of λ needed in [11]. The main tool will be existence, uniqueness and regular dependence on parameters of a bounded solution to a suitable backward stochastic differential equation with infinite horizon. Finally we apply the result to study an optimal control problem.   相似文献   

12.
Recently R. Jensen [1] has proved the uniqueness of viscosity solutions in W^{1,∞} of second order fully nonlinear elliptic equation F (D², Du, u) = 0. He does not assume F to be convex. In this paper we extend his result [1] to the case that F can be dependent on x, i. e. prove that the viscosity solutions in W^{1,∞} of the second order fully nonlinear elliptic equation F (D²u, Du, u, x) = 0 are unlique. We do not assume F to be convex either.  相似文献   

13.
The paper considers solutions of the coercive inequalities
defined on an arbitrary (possibly, unbounded) subset ℝ n , where n ≥ 2, L and are elliptic operators of the form
, and F is a certain function. __________ Translated from Sovremennaya Matematika. Fundamental'nye Napravleniya (Contemporary Mathematics. Fundamental Directions), Vol. 7, Partial Differential Equations, 2004.  相似文献   

14.
This paper is concerned with a equation, which is a model of filtration in partially saturated porous media, with mixed boundary condition of Dirichlet-Neumann type {∂_tb(u) - ∇ • a [∇u + k(b(u))] = f \qquad in \quad (0, ∞) × Ω u = h(t, x) \qquad on \quad (0, ∞) × Γ_0 v • a [∇u + k(b(u))] = g(t, x) \qquad on \quad (0, ∞) × Γ_1 We have proved that there exists one and only one periodic solution of the problem under the data f, g and h with same period. Moreover, we have proved that the unique periodic solution ω is asymptotically statble in the sense that for any solution u of the problem b(u(t)) - b(ω(t)) → 0\qquad in L²(Ω) as t → ∞.  相似文献   

15.
In this paper we prove the existence theorem of the strong solutions to the obstacle problems for second order fully nonlinear elliptic equations with the Neumann boundary conditions F(x, u, Du, D²u) ≥ 0, x ∈ Ω u ≤ g, x ∈ Ω (u - g)F(x, u, Du, D²u) = 0, x ∈ Ω D_vu = φ(x, u), x ∈ ∂Ω where F(x, z, p, r) satisfies the natural structure conditions and is concave with respect to r, p, and φ(x, z) is nondecreasing in z, and g(x) satisfies the consistency condition.  相似文献   

16.
The aim of this work is to study the existence of solutions of quasilinear elliptic problems of the type
$\left\{{ll}-{\rm div}([a(x) + |u|^q] \nabla u) + b(x)u|u|^{p-1}|\nabla u|^2 = f(x), & {\rm in}\,\Omega;\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \; u = 0, & \,{\rm on}\,\partial\Omega. \right.$\left\{\begin{array}{ll}-{\rm div}([a(x) + |u|^q] \nabla u) + b(x)u|u|^{p-1}|\nabla u|^2 = f(x), & {\rm in}\,\Omega;\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \; u = 0, & \,{\rm on}\,\partial\Omega. \end{array}\right.  相似文献   

17.
In this article we generahze the polynomials of Kantorovitch \({P_n}(f)\) . Let \({B_n}\) be a sequence of linear operators from C[a,b] into \({H_n}\), if \[f(t) \in L[a,b],F(u) = \int_a^u {f(t)dt} ,{A_n}(f(t),x) = \frac{d}{{dx}}{B_{n + 1}}(F(u),x)\], here \({B_n}\)satisfy\[\begin{array}{l} (a):{B_n}(1,x) \equiv 1,{B_n}(u,x) \equiv x;\(b):for{\kern 1pt} {\kern 1pt} g(u) \in C[a,b]{\kern 1pt} {\kern 1pt} we{\kern 1pt} {\kern 1pt} have{\kern 1pt} {\kern 1pt} {B_n}(g(u),b) = g(b). \end{array}\]. we call such \({A_n}(f)\) generalized polynomials of Kantorovitch (denoted by \({A_n}(f) \in K\) ). Let \[\begin{array}{l} {\varepsilon _n}({W^2};x)\mathop = \limits^{def} \mathop {\sup }\limits_{f \in {W^2}} \left| {{A_n}(f(t),x) - f(x) - f'(x)({A_n}(t,x) - x)} \right|,\{\varepsilon _n}{({W^2}{L^p})_{{L^p}}}\mathop = \limits^{def} \mathop {\sup }\limits_{f \in {W^2}{L^p}} {\left\| {{A_n}(f(t),x) - f(x) - f'(x)({A_n}(t,x) - x)} \right\|_p}. \end{array}\] We have proved the following results: Let An he a sequence of linear continuous operators of type \[C[a,b] \Rightarrow C[a,b],{D_n}(x,z)\mathop = \limits^{def} {A_n}(\left| {t - z} \right|,x) - \left| {x - z} \right| - ({A_n}(t,x) - x)Sgn(x - z),{A_n}(1,x) = 1\] then (1):\({\varepsilon _n}({W^2};x) = \frac{1}{2}\int_a^b {\left| {{D_n}(x,z)} \right|} dz\), (2): Moreover, if \({A_n}\) be a sequence of linear positive operators, then for \(\left[ {\begin{array}{*{20}{c}} {a \le x \le b}\{a \le z \le b} \end{array}} \right]\) ,we have \({D_n}(x,z) \ge 0\), and \({\varepsilon _n}({W^2};x) = \frac{1}{2}{A_n}({(t - x)^2},x)\). Let \({A_n}(f) \in K\) be a sequence of linear positive operators,\[{R_n}{(z)_L} = \frac{1}{2}\int_a^b {\left| {{D_n}(x,z)} \right|} dx\],then \[{R_n}{(z)_L} = \frac{1}{2}\left[ {{B_{n + 1}}({u^2},z) - {z^2}} \right]\] and \[{\varepsilon _n}{({W^2}L)_L}{\rm{ = }}\frac{1}{2}\left\| {{B_{n + 1}}({u^2},z) - {z^2}} \right\|\]. Let \[{g_n} = \frac{1}{2}\mathop {\max }\limits_{a \le x \le b} {A_n}({(t - x)^2},x),{h_n} = \frac{1}{2}\mathop {\max }\limits_{a \le z \le b} \left[ {{B_{n + 1}}({u^2},z) - {z^2}} \right],\] then \[{\varepsilon _n}{({W^2}{L^p})_{{L^p}}} \le {g_n}^{1 - \frac{1}{p}}{h_n}^{\frac{1}{p}}(1 < p < \infty ).\]  相似文献   

18.
We are concerned with existence, positivity property and long-time behavior of solutions to the following initial boundary value problem of a fourth order degenerate parabolic equation in higher space dimensions   相似文献   

19.
We consider the following anisotropic Emden–Fowler equation where is a bounded smooth domain and a(x) is a positive smooth function. We investigate the effect of anisotropic coefficient a(x) on the existence of bubbling solutions. We show that at given local maximum points of a(x), there exists arbitrarily many bubbles. As a consequence, the quantity can approach to as . These results show a striking difference with the isotropic case [ Constant].  相似文献   

20.
We deal with the following parabolic problem, $$(P)\left\{\begin{array}{lll} u_t - \Delta{u} + |\nabla{u}|^q \quad=\quad \lambda{g}(x)u + f(x, t),\quad u > 0 \; {\rm in} \; \Omega \; \times \; (0, T),\\ \qquad\quad\quad\; u(x, t) \quad=\quad 0 \quad{\rm on}\; {\partial}{\Omega}\; \times ; (0, T),\\ \qquad\quad\quad\; u(x, 0) \quad=\quad u_{0}(x), \quad x \in {\Omega},\end{array}\right.$$ where is a bounded regular domain or ${\Omega = \mathbb{R}^N}$ , ${1 < q \leq 2, \lambda > 0\; {\rm and}\; f \geq 0, u_{0} \geq 0}$ are in a suitable class of functions. We give assumptions on g with respect to q for which for all λ >  0 and all ${f \in L^1(\Omega_T ), f \geq 0}$ , problem (P) has a positive solution. Under some additional conditions on the data, the Cauchy problem and the asymptotic behavior of the solution are also considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号