首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
本文设计合成了两个典型的共轭的电子给体与电子受体(D-A)化合物:2-三氰基乙烯基蒽(2-TCVA)与9-三氰基乙烯基蒽(9-TCVA),通过极性效应,温度效应对它们基态与激发态的光谱行为进行了表征。研究表明:这两个化合物均表现出显著的电荷转移(CT)吸收峰,分子受光激发后,9-TCVA只能在非极性溶剂中产生分子内电荷转移(ICT)态荧光,而2-TCVA在极性与非极性溶剂中都能从ICT态发光。另外,温度效应显示冻结态下,2-TCVA只发射ICT态荧光,而9-TCVA既发射类蒽(anthracene-like)荧光又发射ICT态荧光,造成这一现象的主要原因可能是2-TCVA与9-TCVA分子平面性上的差异而引起分子内电荷转移相互作用不同所致。文中还利用了Bilot-Kawski公式估算了化合物2-TCVA在激发态与基态时偶极矩的差值为18.8D。  相似文献   

2.
合成了一组带不同取代基的三芳基吡唑啉化合物,对它们在不同极性溶剂中的光物理行为(如荧光量子产率,荧光寿命等)进行了测定指出:这类化合物在光的激发下除存在有分子内共轭条件下的电荷转移行为外,还存在着分子内非共轭条件下的电子转移,本工作还以三芳基吡唑啉化合物为猝灭剂对氧鎓盐的荧光猝灭能力进行了研究,并对所得结果作了讨论。  相似文献   

3.
本文设计合成了二个典型的共轭的电子给体与电子受体(D-A)化合物:2-二氰基乙烯基蒽(2-DCVA)与9-二氰基乙烯基蒽(9-DCVA).考察了极性因素、温度因素对化合物发光能力的影响。研究表明:在不同极性溶剂中该二化合物均发分子内电荷转移(ICT)态的荧光,但2-DCVA的荧光量子产率(Φf)远大于9-DCVA的荧光量子产率,造成这一现象的主要原因可能是2-DCVA分子的平面性好于9-DCVA分子而引起分子内电荷转移相互作用不同所致.文中还用Bilot-Kawski公式估算了该二化合物在激发态与基态时仍极矩的差值。  相似文献   

4.
利用N-乙基咔唑和2-甲基蒽醌合成了一种A-π-D-π-A分子内电荷转移型化合物3,6-二(蒽醌-2-乙烯基)-N-乙基咔唑,并对该化合物的光化学和光物理行为进行了研究。荧光光谱表明,该化合物的发光行为对溶剂的极性非常敏感,随着溶剂极性的增大,其荧光最大发射峰有明显红移,并在强极性溶剂乙腈中出现了双荧光现象。该化合物的激发态和基态的偶极矩差值△μ为3.014D,发生了从给体(咔唑基)的N原子到分子两端受体(蒽醌)的羰基的分子内电荷转移。  相似文献   

5.
王钰  张立鹏  赵榆霞 《化学通报》2019,82(7):612-617
设计合成了一系列基于芳香酮的具有分子内扭曲态电荷转移(TICT)特性的化合物,通过线性光物理性质与双光子吸收性质的表征,研究了分子结构中不同共轭基团和不同取代基位置对化合物光谱性能的影响,同时通过溶剂效应研究了化合物的分子内电荷转移性质。结合理论计算结果表明分子的共轭骨架和取代基的位置都能显著影响分子内电荷转移特征。其中芴酮系列的化合物表现出了较强的双光子吸收与聚集诱导荧光增强效应,在生物荧光成像领域有着潜在的应用价值。  相似文献   

6.
一种新型的可见光诱导电子转移生酸体系的研究   总被引:1,自引:0,他引:1  
对 4种分子内共轭的电荷转移化合物和取代的双 (三氯甲基 ) 2 ,4,6 三嗪分子间的光诱导电子转移和光生酸反应进行了详细研究 .通过荧光猝灭和体系荧光随时间的变化可看到作为电子受体的三嗪分子和作为电子给体电荷转移化合物间的光诱导电荷转移作用 .在对体系酸度的测定中 ,可清楚地看到体系经光照后所发生的变化 .对所研究生酸体系引发酚醛树脂 六甲氧基甲基三聚氰胺交联反应的能力进行了初步研究 .对可能发生的反应机制进行了讨论  相似文献   

7.
具有电子给体山)和电子受体的给-受体(D-。-A)分子,由于在光诱导下可以产生分子内电荷转移(ICT)激发态,可作为非线性光学和光电转换等材料[”’j.D-。A分子由于共轭体系一端是推电子取代基,另一端是吸电子取代基,所以其HOMO能级较高,LUMO能级较低[”门,在基态容易发生 HO-  相似文献   

8.
本文以二苯乙烯和香豆素为共轭桥,二乙氨基为电子给体,羰基为电子受体,合成了一个具有D-π1-A-π2-D结构的香豆素酮类双光子染料C3.用紫外-可见光谱、荧光光谱研究了该化合物的光物理性质.发现在光作用下C3很容易发生分子内电荷转移,进而转变为扭曲的分子内电荷转移,产生很大的偶极矩变化.以飞秒脉冲激光为激发光源,用上转换荧光法测定了其双光子吸收截面.在激发波长为850 nm时,新化合物的双光子吸收截面值达1292 GM,比同系列香豆素酮衍生物C1、C2的双光子吸收截面值高一到两个数量级.  相似文献   

9.
设计并合成了以香豆素为荧光发色团的多氰基分子化合物TCC。分子内强烈的电荷转移效应使得其本身荧光较弱。巯基化合物如半胱氨酸(Cys)、高半胱氨酸(Hcy)和还原型谷胱甘肽(GSH)的加入能与TCC中的三氰基乙烯基进行加成反应从而破坏分子内电荷转移,使分子内电荷转移吸收峰消失,颜色由紫色变成黄绿色,最大吸收波长由560 nm移至380 nm。并且化合物的荧光也随着巯基化合物的加入逐渐增强,荧光的强度与巯基化合物的浓度有很好的线性关系,检测限可以达到10-5 mol/L。其它离子与不含巯基的氨基酸则不会与化合物TCC发生上述反应,也就不会对体系的吸收和荧光光谱产生明显的影响,从而实现高效、专一的识别巯基化合物。  相似文献   

10.
对2-芳基苯并噁唑衍生物的光谱及光物理行为进行了研究。结果表明,该系列化合物与常见分子内共轭电荷转移化合物的特性明显不同。分析了存在差异的原因,指出该类化合物的较强的荧光发射能力与其分子中的C=N双键的异构化受阻密切相关。  相似文献   

11.
The synthesis and photophysics of two novel 2‐(2′‐hydroxyphenyl)benzothiazole (HBT) derivatives are presented. The electron‐withdrawing trifluoromethyl (CF3) group in compound 1 facilitates the deprotonation of the phenolic hydroxy group. Well‐resolved triple fluorescence from the enol, keto, and phenolic anion, which ranges from 350 to 600 nm, was detected for 1 in ethanol, which marks the first time triple fluorescence from an excited‐state intramolecular proton transfer (ESIPT) molecule has been reported. Both triphenylamine and CF3 were introduced into derivative 2 . Intramolecular charge transfer and the “red‐edge effect” resulted in the bathochromic shift of dual fluorescence of 2 . Triple fluorescence was also observed for 2 in ethanol. In mixed acetonitrile and ethanol, pure white‐light emission with CIE coordinates of (0.33, 0.33) and a quantum yield of 0.25 was achieved for 2 . This work provides a new avenue for the rational design of an ESIPT molecule to achieve white‐light generation under mild conditions.  相似文献   

12.
Ratiometric sensors for the detection of metal ions have gained increasing attention due to its self-calibration tendency for the environmental effects. In this context, we have synthesized and characterized a dual emitting ratiometric Zn(2+) probe (1) having acridinedione as a fluorophore and N,N-bis(2-pyridylmethyl)amine (BPA) as a receptor unit. Existence of two different conformation of the molecule with photoinduced electron transfer (PET) from amine moiety to the acridinedione fluorophore leads to dual emission, namely locally excited (425 nm) and anomalous charge transfer emission (560 nm) in aprotic solvents. In the presence of one equivalent of Zn(2+), a 15-fold fluorescence enhancement in the locally excited state together with the quenching of charge transfer emission is observed. The intensity changes at the two emission peaks allow a ratiometric detection of Zn(2+) under PET signaling mechanism. The utilization of PET process for the ratiometric fluorescence change will further signify the importance of PET mechanism in sensing action. Addition of Zn(2+) to 1 in acetonitrile/water mixtures shows a single emission peak with fluorescence enhancement.  相似文献   

13.
The origin of the dual fluorescence of DMABN (dimethylaminobenzonitrile) and other benzene derivatives is explained by a charge transfer model based on the properties of the benzene anion radical. It is shown that, in general, three low-lying electronically excited states are expected for these molecules, two of which are of charge transfer (CT) character, whereas the third is a locally excited (LE) state. Dual fluorescence may arise from any two of these states, as each has a different geometry at which it attains a minimum. The Jahn-Teller induced distortion of the benzene anion radical ground state helps to classify the CT states as having quinoid (Q) and antiquinoid (AQ) forms. The intramolecular charge transfer (ICT) state is formed by the transfer of an electron from a covalently linked donor group to an anti-bonding orbital of the pi-electron system of benzene. The change in charge distribution of the molecule in the CT states leads to the most significant geometry change undergone by the molecule which is the distortion of the benzene ring to a Q or AQ structure. As the dipole moment is larger in the perpendicular geometry than in the planar one, this geometry is preferred in polar solvents, supporting the twisted intramolecular charge transfer (TICT) model. However, in many cases the planar conformation of CT excited states is lower in energy than that of the LE state, and dual fluorescence can be observed also from planar structures.  相似文献   

14.
A theory for simultaneous charge and energy transfer in the carotenoid-chlorophyll-a complex is presented here and discussed. The observed charge transfer process in these chloroplast complexes is reasonably explained in terms of this theory. In addition, the process leads to a mechanism to drive an electron in a lower to a higher-energy state, thus providing a mechanism for the ejection of the electron to a nearby molecule (chlorophyll) or into the environment. The observed lifetimes of the electronically excited states are in accord/agreement with the investigations of Sundstr?m et al. and are in the range of pico-seconds and less. The change in electronic charge distribution in internuclear space as the system undergoes an electronic transition to a higher-energy state could, under appropriate physical conditions, lead to oscillating dipoles capable of transmitting energy from the carotenoid-chlorophylls chromophore to the reaction center by sending an electromagnetic wave (a photon) which provides a novel new mechanism for energy production. In the simplest version of the F?rster?CDexter theory, the excitation energy of a donor is transferred to an acceptor and then de-excited to the ground state by fluorescence with no electron being transferred. In the process proposed herein, charge and energy both are transferred from donor to acceptor which can further de-excite by fluorescence. The charge transfer time scale involving an actual transfer of electron is in the pico-second range.  相似文献   

15.
This work explores electron transfer through nonbonded contacts in two U-shaped DBA molecules 1DBA and 2DBA by measuring electron-transfer rates in organic solvents of different polarities. These molecules have identical U-shaped norbornylogous frameworks, 12 bonds in length and with diphenyldimethoxynaphthalene (DPMN) donor and dicyanovinyl (DCV) acceptor groups fused at the ends. The U-shaped cavity of each molecule contains an aromatic pendant group of different electronic character, namely p-ethylphenyl, in 1DBA, and p-methoxyphenyl, in 2DBA. Electronic coupling matrix elements, Gibbs free energy, and reorganization energy were calculated from experimental photophysical data for these compounds, and the experimental results were compared with computational values. The magnitude of the electronic coupling for photoinduced charge separation, /V(CS)/, in 1DBA and 2DBA were found to be 147 and 274 cm(-1), respectively, and suggests that the origin of this difference lies in the electronic nature of the pendant aromatic group and charge separation occurs by tunneling through the pendant group, rather than through the bridge. 2DBA, but not 1DBA, displayed charge transfer (CT) fluorescence in nonpolar and weakly polar solvents, and this observation enabled the electronic coupling for charge recombination, /V(CR)/, in 2DBA to be made, the magnitude of which is approximately 500 cm(-1), significantly larger than that for charge separation. This difference is explained by changes in the geometry of the molecule in the relevant states; because of electrostatic effects, the donor and acceptor chromophores are about 1 A closer to the pendant group in the charge-separated state than in the locally excited state. Consequently the through-pendant-group electronic coupling is stronger in the charge-separated state--which controls the CT fluorescence process--than in the locally excited state--which controls the charge separation process. The magnitude of /V(CR)/ for 2DBA is almost 2 orders of magnitude greater than that in DMN-12-DCV, having the same length bridge as for the former molecule, but lacking a pendant group. This result unequivocally demonstrates the operation of the through-pendant-group mechanism of electron transfer in the pendant-containing U-shaped systems of the type 1DBA and 2DBA.  相似文献   

16.
TDDFT calculations, picosecond transient absorption, and time-resolved fluorescence studies of 4-dimethylamino-2-hydroxy-benzaldehyde (DMAHBA) have been carried out to study the electron and proton transfer processes in polar (acetonitrile) and nonpolar (n-hexane) solvents. In n-hexane, the transient absorption (TA) as well as the fluorescence originate from the ππ* state of the keto form (with the carbonyl group in the benzaldehyde ring), which is produced by an intramolecular proton transfer from the initially excited ππ* state of the enol form (OH group in the ring). The decay rate of TA and fluorescence are essentially identical in n-hexane. In acetonitrile, on the other hand, the TA exhibits features that can be assigned to the highly polar twisted intramolecular charge transfer (TICT) states of enol forms, as evidenced by the similarity of the absorption to the TICT-state absorption spectra of the closely related 4-dimethylaminobenzaldehyde (DMABA). As expected, the decay rate of the TICT-state of DMAHBA is different from the fluorescence lifetime of the ππ* state of the keto form. The occurrence of the proton and electron transfers in acetonitrile is in good agreement with the predictions of the TDDFT calculations. The very short-lived (~1 ps) fluorescence from the ππ* state of the enol form has been observed at about 380 nm in n-hexane and at about 400 nm in acetonitrile.  相似文献   

17.
3‐(2,2′‐Bipyridyl)‐substituted iminocoumarin molecules (compounds 1 and 2 ) exhibit dual fluorescence. Each molecule has one electron donor and two electron acceptors that are in conjugation, which leads to fluorescence from two independent charge transfer (CT) states. To account for the dual fluorescence, we subscribe to a kinetic model in which both CT states form after rapid decays from the directly accessed S1 and S2 excited states. Due to the slow internal conversion from S2 to S1, or more likely the slow interconversion between the two subsequently formed CT states, dual emission is allowed to occur. This hypothesis is supported by the following evidence: 1) the emission at short and long ends of the spectrum originates from two different excitation spectra, which eliminates the possibility that dual emission occurs after an adiabatic reaction at the S1 level. 2) The fluorescence quantum yield of compound 2 grows with increasing excitation wavelength, which indicates that the high‐energy excitation elevates the molecule to a weakly emissive state that does not internally convert to the low‐energy, highly emissive state. The intensity of the two emission bands of 1 is tunable through the specific interactions between either of the two electron acceptors with another species, such as Zn2+ in the current demonstration. Therefore, the development of ratiometric fluorescent indicators based on the dual‐emitting iminocoumarin system is conceivable. Further fundamental studies on this series of compounds using time‐resolved spectroscopic techniques, and explorations of their applications will be carried out in the near future.  相似文献   

18.
The excited electronic state dynamics of N(6),N(6)-dimethyladenine (DMAde), a molecule known to emit dual fluorescence, has been studied in aqueous solution using femtosecond fluorescence up-conversion spectroscopy. Time profiles of the fluorescence of DMAde excited at lambda= 258 nm were measured at a series of wavelengths in the range 320 nm or= 500 nm), which appeared slightly delayed compared to the UV fluorescence, the long-lived fluorescence component (tau(3)) dominated, the second component (tau(2)) disappeared. The results are consistent with the assumption that DMAde is primarily excited to a short-lived local excited (LE) electronic state that fluoresces mostly in the UV and decays rapidly, on a approximately 0.5 ps timescale, to an intramolecular charge transfer (ICT) state that emits only at longer wavelengths in the visible spectrum. The fluorescence-time profiles and transient fluorescence spectra reconstructed from the time profiles provided further information on secondary relaxation processes within and between the excited states and their non-radiative relaxation to the electronic ground state.  相似文献   

19.
The chromophores ethynyl pyrene as blue, ethynyl perylene as green and ethynyl Nile red as red emitter were conjugated to the 5‐position of 2′‐deoxyuridine via an acetylene bridge. Using phosphoramidite chemistry on solid phase labelled DNA duplexes were prepared that bear single chromophore modifications, and binary and ternary combinations of these chromophore modifications. The steady‐state and time‐resolved fluorescence spectra of all three chromophores were studied in these modified DNA duplexes. An energy‐transfer cascade occurs from ethynyl pyrene over ethynyl perylene to ethynyl Nile red and subsequently an electron‐transfer cascade in the opposite direction (from ethynyl Nile red to ethynyl perylene or ethynyl pyrene, but not from ethynyl perylene to ethynyl pyrene). The electron‐transfer processes finally provide charge separation. The efficiencies by these energy and electron‐transfer processes can be tuned by the distances between the chromophores and the sequences. Most importantly, excitation at any wavelength between 350 and 700 nm finally leads to charge separated states which make these DNA samples promising candidates for light‐harvesting systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号