首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Expressions are derived for the relative r.m.s. error of diffractometer intensity measurements. The result for stationary specimens:=4R[sin/m w h N eff]1/2, withh=1/2(h F+hS) andN eff=cAv/v2, is identical with the result of Alexander c.s.1, except for a slight difference in the numerical constant and in the definition ofw. The value of this parameter is found to lie betweenR+(wF, wS)min (the last term indicating the smallest of the widthsw F andw S) andR+1/2(w F+wS); it reaches the latter limit in the case of integrated intensities being measured by totalizing counts while scanning through a line. For rotating specimens the particle statistics error turns out to be almost independent ofw. The following approximative formula is established:=6.5R sin/h(mN eff)1/2, showing that the factor of improvement resulting from specimen rotation is of the order of (h/w)1/2.Part. II: Experiments, by P. M. de Wolff, Jeanne M. Taylor and W. Parrish, is in the course of preparation.Work done when on leave of absence (Nov. 1954–May 1955) from Technisch Physische Dienst T.N.O. and T.H., Delft, Netherlands.  相似文献   

2.
For a given m=(m1,...,mn)(R+)n, let p and q(R3)n be two central configurations for m. Then we call p and q equivalent and write pq if they differ by an SO(3) rotation followed by a scalar multiplication as well as by a permutation of bodies. Denote by L(n,m) the set of equivalent classes of n-body collinear central configurations in R3 for any given mass vector m=(m1,...,mn)(R+)n. The main discovery in this paper is the existence of a union H3 of three non-empty algebraic surfaces in the mass half space (m1,m2m1,m3m2)R+×R2 besides the planes generated by equal masses, which decreases the number of collinear central configurations. The union H3 in R+×R 2 is explicitly constructed by three 6-degree homogeneous polynomials in three variables such that, for any mass vector m=(m1,m2,m3)(R+)3, # L(3,m)=3, if m1, m2, and m3 are mutually distinct and (m1,m2m1,m3m2)H3, # L(3,m)=2, if m1, m2, and m3 are mutually distinct and (m1,m2m1,m3m2)H3, # L(3,m)=2, if two of m1, m2, and m3 are equal but not the third, # L(3,m)=1, if m1=m2=m3. We give also a sharp upper bound on #L(n,m) for any positive mass vector m(R+)n.  相似文献   

3.
We show that each quasi-light mapping f in the Sobolev space W 1n (, R n ) satisfying ¦Df(x n K(x, f)J(x, f) for almost every x and for some KL r (), r>n-1, is open and discrete. The assumption that f be quasilight can be dropped if, in addition, it is required that f W 1p (, R n ) for some p > = n + 1/ (n-2). More generally, we consider mappings in the John Ball classes Axxx p,q (), and give conditions that guarantee their discreteness and openness.  相似文献   

4.
In this paper, we show that the maximum principle holds for quasilinear elliptic equations with quadratic growth under general structure conditions.Two typical particular cases of our results are the following. On one hand, we prove that the equation (1) {ie77-01} where {ie77-02} and {ie77-03} satisfies the maximum principle for solutions in H 1()L(), i.e., that two solutions u 1, u 2H1() L() of (1) such that u 1u2 on , satisfy u 1u2 in . This implies in particular the uniqueness of the solution of (1) in H 0 1 ()L().On the other hand, we prove that the equation (2) {ie77-04} where fH–1() and g(u)>0, g(0)=0, satisfies the maximum principle for solutions uH1() such that g(u)¦Du|{2L1(). Again this implies the uniqueness of the solution of (2) in the class uH 0 1 () with g(u)¦Du|{2L1().In both cases, the method of proof consists in making a certain change of function u=(v) in equation (1) or (2), and in proving that the transformed equation, which is of the form (3) {ie77-05}satisfies a certain structure condition, which using ((v1 -v 2)+)n for some n>0 as a test function, allows us to prove the maximum principle.  相似文献   

5.
This paper studies Lp-estimates for solutions of the nonlinear, spatially homogeneous Boltzmann equation. The molecular forces considered include inverse kth-power forces with k > 5 and angular cut-off.The main conclusions are the following. Let f be the unique solution of the Boltzmann equation with f(v,t)(1 + ¦v2¦)(s 1 + /p)/2 L1, when the initial value f 0 satisfies f 0(v) 0, f 0(v) (1 + ¦v¦2)(s 1 + /p)/2 L1, for some s1 2 + /p, and f 0(v) (1 + ¦v¦2)s/2 Lp. If s 2/p and 1 < p < , then f(v, t)(1 + ¦v¦2)(s s 1)/2 Lp, t > 0. If s >2 and 3/(1+ ) < p < , thenf(v,t) (1 + ¦v¦2)(s(s 1 + 3/p))/2 Lp, t > 0. If s >2 + 2C0/C1 and 3/(l + ) < p < , then f(v,t)(1 + ¦v¦2)s/2 Lp, t > 0. Here 1/p + 1/p = 1, x y = min (x, y), and C0, C1, 0 < 1, are positive constants related to the molecular forces under consideration; = (k – 5)/ (k – 1) for kth-power forces.Some weaker conclusions follow when 1 < p 3/ (1 + ).In the proofs some previously known L-estimates are extended. The results for Lp, 1 < p < , are based on these L-estimates coupled with nonlinear interpolation.  相似文献   

6.
This paper studies similarity solutions for pulsatile flow in a tube with wall injection and suction. The Navier-Stokes equations are reduced to a system of three ordinary differential equations. Two of the equations represent the effects of suction and injection on the steady flow while the third represents the effects of suction and injection on pulsatile flow. Since the equations for steady flow have been studied previously, the analysis centers on the third equation. This equation is solved numerically and by the method of matched asymptotic expansions. The exact numerical solutions compare well with the asymptotic solutions.The effects of suction and injection on pulsatile flow are the following: a) Small values of suction can cause a resonance-like effect for low frequency pulsatile flow. b) The annular effect still occurs but for large injection or suction the frequency at which this effect becomes dominant depends on the cross-flow Reynolds number. c) The maximum shear stress at the wall is decreased by injection, but may be increased or decreased by suction.Nomenclature a radius of the tube - a 0 2 i 2 - A0, B0, C0, D0, E0 constant coefficients appearing in the expression for pressure - b a non-dimensionalized length - b 0 2 i 2 2 - b k complex coefficients of a power series - B - C 1, C 2, D complex constants - d - D 1,2 - f() F(a 1/2)/aV - f 0,f 1,... functions of order one used in asymptotic expansions of f() - F(r) rv r - g() - G(r) a steady component of velocity in axial direction - h() 4/C0 a 2 H(a 1/2) - h 0,h 1,h 2,...;l 0,l 1,l 2,... functions of order one used in asymptotic expansions for h() in outer regions - H(r) complex valued function giving unsteady component of velocity - H 0, H 1, H 2, ... K 0, K 1, K 2, ...; L 0, L 1, L 2, ... functions of order one used in asymptotic expansions for h() in inner regions - i - J 0, J 1, Y 0, Y 1 Bessel functions of first and second kind - k - K Rk/2b 2 - O order symbol - p pressure - p 1(z, t) arbitrary function related to pressure - r radial coordinate - r 0 (1+16 4 4)1/4 - R Va/, the crossflow Reynolds number - t time - u() G(r)/V - v r radial velocity - v z axial velocity - V constant velocity at which fluid is injected or extracted - z axial coordinate - 2 a 2/4 - 4.196 - small parameter; =–2/R (Sect. 4); =–R/2 (Sect. 5); =2/R(Sect. 6) - r 2/a 2 - * 0.262 - Arctan (4 2 2) - , inner variables - kinematic viscosity - b - * zero of g() - density - (r, t) arbitrary function related to axial velocity - frequency  相似文献   

7.
It is well known that the Kolmogorov 1941 theory is based on global invariance, in the limit of Reynolds number tending to infinity. Experimentally, it is well verified only for very high Reynolds numbers, namelyR 2000 (Monin and Yaglom 1975).We propose a new experimental representation for energy spectra. Using the Kolmogorov scales, a compilation of dimensionless spectra (E= (k)/(v 5)1/4 andK=k(v 3/)1/4) shows that log(0.154E)/log(R /R*) is a universal function of log(5.42K)/log(R /R*) withR*=75. This new representation is not compatible with neither local nor global scaling invariance. The constant 5.42 takes into account the small scale intermittency. Similar results have been obtained for velocity structure functions of order 2, 3 and 6. In particular the wavenumber constant 5.42 is independent on the order of the moments.  相似文献   

8.
We establish unimprovable sufficient conditions for the unique solvability of the boundary-value problem
and for the nonnegativity of its solution; here, : C([a, b]; R) L([a, b]; R) is a linear bounded operator, q L([a, b]; R), R +, and c R.  相似文献   

9.
For linear scalar parabolic equations such as on a finite interval 0x, with various boundary conditions, we obtain canonical Floquet solutions u n (t, x). These solutions are characterized by the property that z(u n (t, x))=n for all t, where z(·) denotes the zero crossing (lap) number of Matano. The coefficients a(t, x) and b(t, x) are not assumed to be periodic in t, but if they are, the solutions u n (t, x) reduce to the standard Floquet solutions. Our results may naturally be expressed in the language of linear skew product flows. In this context, we obtain for each N1 an exponential dichotomy between the bundles span {u n (·,·)} n =1/N and .  相似文献   

10.
Let Ω be a bounded open domain in R n , gRR a non-decreasing continuous function such that g(0)=0 and h ε L loc 1 (R+; L 2(Ω)). Under suitable assumptions on g and h, the rate of decay of the difference of two solutions is studied for some abstract evolution equations of the general form u ′′ + Lu + g(u ) = h(t,x) as t → + ∞. The results, obtained by use of differential inequalities, can be applied to the case of the semilinear wave equation $$u_u - \Delta u + g{\text{(}}u_t {\text{) = }}h{\text{ in }}R^ + \times \Omega ,{\text{ }}u = {\text{0 on }}R^ + \times \partial \Omega$$ in R +×Ω, u=0 on R +×?Ω. For instance if \(g(s) = c\left| s \right|^{p - 1} s + d\left| s \right|^{q - 1} s\) with c, d>0 and 1 < p≦q, (n?2)q≦n+2, then if \(h \in L^\infty (R + ;L^2 (\Omega ))\) , all solutions are bounded in the energy space for t≧0 and if u, v are two such solutions, the energy norm of u(t) ? v(t) decays like t ?1/p?1 as t → + ∞.  相似文献   

11.
For any compact n-dimensional Riemannian manifold (M, g) without boundary, a compact Riemannian manifold without boundary, and 0 < T ≦ +∞, we prove that for n ≧ 4, if u : M × (0, T] → N is a weak solution to the heat flow of harmonic maps such that , then uC (M × (0, T], N). As a consequence, we show that for n ≧3, if 0 < T < +∞ is the maximal time interval for the unique smooth solution uC (M × [0, T), N) of (1.1), then blows up as tT.  相似文献   

12.
Let X be a uniformly smooth real Banach space. Let T:X → X be continuos and strongly accretive operator. For a given f ε X, define S: X → X by Sx =f−Tx+x, for all x ε X. Let {an} n=0 , {βn} n=0 be two real sequences in (0, 1) satisfying:
((i))
;
((ii))
Assume that {un} n=0 and {υn} n=0 are two sequences in X satisfying ‖un‖ = 0(αn) and ‖υn‖ → 0 as n → ∞. For arbitrary x0 ε X, the iteration sequence {xn} is defined by
(1)
Moreover, suppose that {Sxn} and {Syn} are bounded, then {xn} converges strongly to the unique fixed point of S.  相似文献   

13.
Starting from the statistical structural model of Alemánet al. (1988), we have developed an alternative to Stone's (1970, 1973; Aziz and Settari, 1979) methods for estimating steady-state, three-phase relative permeabilities from two sets of steady-state, two-phase relative permeabilities. Our result reduces to Stone's (1970; Aziz and Settari, 1979) first method, when the steady-state, two-phase relative permeability of the intermediate-wetting phase with respect to either the wetting phase or the nonwetting phase is a linear function of the saturation of the intermediate-wetting phase. As the curvature of either of these relative permeability functions increases, the deviation of our result from Stone's (1970; Aziz and Settari, 1979) first method increases. Currently, there are no data available that are sufficiently complete to form the basis of a comparison between our result and either of the methods of Stone (1970, 1973; Aziz and Settari, 1979).Notation a free parameter in Equation (19) - B(m, n) Beta function defined by Equation (17) - F (w), F(nw) defined by Equations (31) and (27), respectively - G (i) defined by Equations (37) and (39) - H (i) defined by Equations (38) and (40) - k (i) three-phase relative permeability fo phasei - k (i)* defined by Equations (34) through (36) - k (i,j) relative permeability to phasei during a two-phase flow with phasej, possibly in the presence of an immobile phase - k (i,j)* defined by analogy with Equations (41) and (42) - k (i,j)** defined by Equations (49), (50), (53), and (54) - k max (i) defined by Equation (11) - k 1970 (iw) defined by Equation (10) - k 1973 (iw)* defined by Equation (58) - k 1973 (iw) defined by Equation (13) - L length and diameter of cylindrical averaging surfaceS - L t length of an individual capillary tube enclosed byS - L t * defined by Equation (19) - L t,min length of pore whose radius isR max - N total number of pores contained within the averaging surfaceS - p 1 (i) ,p 2 (i) pressure of phasei at entrance and exit of averaging surfaceS, respectively - p defined by Equation (21) - p c (i,j) capillary pressure function - p c (i,j)* defined by Equations (23), (29), and (32) - p (i) intrinsic average of pressure within phasei defined by Alemánet al. (1988) - R pore radius - R * defined by Equation (18) - R max maximum pore radius that occurs withinS - s (i) local saturation of phasei - s (i)* defined by Equation (7) - s min (i) minimum or immobile saturation of phasei - S averaging surface introduced in local volume averaging - V (i) volume of phasei occupying the pore space enclosed byS Greek Letters , parameters in the Beta distribution defined by Equation (16) - (w), (nw) functions of only the wetting phase saturation and the non-wetting phase saturation, respectively. Introduced in Equation (6) - (i,j) interfacial tension between phasesi andj - (x) Gamma function - defined by Equation (57) - , spherical coordinates in system centered upon the axis of the averaging surfaceS - max maximum value of , 45 °, in view of assumption (9) - (i,j) contact angle between phasesi andj measured through the displacing phase - (w),(nw) functions of only the wetting phase saturation and the non-wetting phase saturation, respectively. Introduced in Equation (12) Other gradient operator Amoco Production Company, PO Box 591 Tulsa, OK 74102, U.S.A.  相似文献   

14.
IntroductionandProblemintheResearchofToroidThispaperdealswiththeexistenceof2π_periodicsolutionstothenonlinearsystemoffirst_orderdifferentialequationswithadeviatingargument x(t) =Bx(t) F(x(t-τ) ) p(t) ,( 1 )wherex(t)∈R2 , x(t) =ddtx(t) ,τ∈R ,B∈R2×2 ,F :R2 →R2 isboundedandp∈C(…  相似文献   

15.
We consider a family of linearly elastic shells with thickness 2?, clamped along their entire lateral face, all having the same middle surfaceS=φ() ?R 3, whereω ?R 2 is a bounded and connected open set with a Lipschitz-continuous boundaryγ, andφl 3 ( $\overline \omega$ ;R 3). We make an essential geometrical assumption on the middle surfaceS, which is satisfied ifγ andφ are smooth enough andS is “uniformly elliptic”, in the sense that the two principal radii of curvature are either both>0 at all points ofS, or both<0 at all points ofS. We show that, if the applied body force density isO(1) with respect to?, the fieldtu(?)=(u i(?)), whereu i (?) denote the three covariant components of the displacement of the points of the shell given by the equations of three-dimensional elasticity, one “scaled” so as to be defined over the fixed domain Ω=ω×]?1, 1[, converges inH 1(Ω)×H 1(Ω)×L 2(Ω) as?→0 to a limitu, which is independent of the transverse variable. Furthermore, the averageξ=1/2ε ?1 1 u dx 3, which belongs to the space $$V_M (\omega ) = H_0^1 (\omega ) \times H_0^1 (\omega ) \times L^2 (\omega ),$$ satisfies the (scaled) two-dimensional equations of a “membrane shell” viz., $$\mathop \smallint \limits_\omega a^{\alpha \beta \sigma \tau } \gamma _{\sigma \tau } (\zeta )\gamma _{\alpha \beta } (\eta ) \sqrt \alpha dy = \mathop \smallint \limits_\omega \left\{ {\mathop \smallint \limits_{ - 1}^1 f^i dx_3 } \right\}\eta _i \sqrt a dy$$ for allη=(η i) εV M(ω), where $a^{\alpha \beta \sigma \tau }$ are the components of the two-dimensional elasticity tensor of the surfaceS, $$\gamma _{\alpha \beta } (\eta ) = \frac{1}{2}\left( {\partial _{\alpha \eta \beta } + \partial _{\beta \eta \alpha } } \right) - \Gamma _{\alpha \beta }^\sigma \eta _\sigma - b_{\alpha \beta \eta 3} $$ are the components of the linearized change of metric tensor ofS, $\Gamma _{\alpha \beta }^\sigma$ are the Christoffel symbols ofS, $b_{\alpha \beta }$ are the components of the curvature tensor ofS, andf i are the scaled components of the applied body force. Under the above assumptions, the two-dimensional equations of a “membrane shell” are therefore justified.  相似文献   

16.
Let (X, ) and (Y,C) be two measurable spaces withX being a linear space. A system is determined by two functionsf(X): X X and:X×YX, a (small) positive parameter and a homogeneous Markov chain {y n } in (Y,C) which describes random perturbations. States of the system, say {x n X, n=0, 1,}, are determined by the iteration relations:x n+1 =f(x n )+(x n ,Yn+1) forn0, wherex 0 =x 0 is given. Here we study the asymptotic behavior of the solutionx n as 0 andn under various assumptions on the data. General results are applied to some problems in epidemics, genetics and demographics.Supported in part by NSF Grant DMS92-06677.Supported in part by NSF Grant DMS93-12255.  相似文献   

17.
We study the vector boundary value problem with boundary perturbations: ε~2y~((4))=f(x,y,y″,ε, μ) ( μ<χ<1-μ) y(χ,ε,μ)l_(χ-μ)= A_1(ε,μ), y(χ,ε,μ)l_(χ-1-μ)=B_1(ε,μ) y″(χ,ε,μ)l_(χ-μ)=A_2(ε,μ),y″(χ,ε,μ)l_(χ-1-μ)=B_2(ε,μ)where yf, A_j and B_j (j=1,2) are n-dimensional vector functions and ε,μ are two small positive parameters. This vector boundary value problem does not appear to have been studied, although the scalar boundary value problem has been treated. Under appropriate assumptions, using the method of differential inequalities we find a solution of the vector boundary value problem and obtain the uniformly valid asymptotic expansions.  相似文献   

18.
In this paper we consider the boundary value problem where ε.μ are two positive parameters. Under f_y≤-k<0 and other suitable restrictions, there exists a solution and it satisfied where y_(0,0)(x) is solution of reduced problem while y_i-j,j(x)(j=0,1,...,i;i=1,2,...,m) can be obtained successively from certain linear equations.  相似文献   

19.
1IntroductionandPreliminariesLetXbearealBanachspacewithnormIJ'11andadualX'.ThenormalizeddualitymappingJ:X~ZxisdefinedbyJx={x'eX*I(x,x')=11x112=11x if'},where',')denotesthegeneralizeddualitypairing.Itiswell-knownthatifX isstrictlyconvex,Jissingle-valuedandJ(tx)=tjxforallt201xeX.IfX*isuniformlyconvex,thenJisuniformlycontinuousonanyboundedsubsetSofX(of.Browde,fljandBarbuL2]).AnoperatorTwithdomainD(T)andrangeR(T)inXissaidtobeaccretiveifforeveryx,y6D(T),thereexistsajeJ(x--y)suchthat(T…  相似文献   

20.
The Rouse model is a well established model for nonentangled polymer chains and its dynamic behavior under step strain has been fully analyzed in the literature. However, to the knowledge of the authors, no analysis has been made for the orientational anisotropy for the Rouse eigenmodes during the creep and creep recovery processes. For completeness of the analysis of the Rouse model, this anisotropy is calculated from the Rouse equation of motion. The calculation is simple and straightforward, but the result is intriguing in a sense that respective Rouse eigenmodes do not exhibit the single Voigt-type retardation. Instead, each Rouse eigenmode has a distribution in the retardation time. This behavior, reflecting the interplay among the Rouse eigenmodes of different orders under the constant stress condition, is quite different from the behavior under rate-controlled flow (where each eigenmode exhibits retardation/relaxation associated with a single characteristic time).List of abbreviations and symbols a Average segment size at equilibrium - Ap(t) Normalized orientational anisotropy for the p-th Rouse eigenmode defined by Eq. (14) - p-th Fourier component of the Brownian force (=x, y) - FB(n,t) Brownian force acting on n-th segment at time t - G(t) Relaxation modulus - J(t) Creep compliance - JR(t) Recoverable creep compliance - kB Boltzmann constant - N Segment number per Rouse chain - Qj(t) Orientational anisotropy of chain sections defined by Eq. (21) - r(n,t) Position of n-th segment of the chain at time t - S(n,t) Shear orientation function (S(n,t)=a–2<ux(n,t)uy(n,t)>) - T Absolute temperature - u(n,t) Tangential vector of n-th segment at time t (u = r/n) - V(r(n,t)) Flow velocity of the frictional medium at the position r(n,t) - Xp(t), Yp(t), and Zp(t) x-, y-, and z-components of the amplitudes of p-th Rouse eigenmode at time t - Strain rate being uniform throughout the system - Segmental friction coefficient - 0 Zero-shear viscosity - p Numerical coefficients determined from Eq. (25) - Gaussian spring constant ( = 3kBT/a2) - Number of Rouse chains per unit volume - (t) Shear stress of the system at time t - steady Shear stress in the steadily flowing state - R Longest viscoelastic relaxation time of the Rouse chain  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号