首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The effect of lipid phase order of isolated thylakoid membranes on fluorescent characteristics of both photosystems during illumination with high light intensity at 22 degrees C and 4 degrees C was investigated. For artificial modification of membrane fluidity two membrane perturbing agents were applied-cholesterol and benzyl alcohol. 77 K fluorescence emission and excitation spectra of control, cholesterol- and benzyl alcohol-treated thylakoid membranes were analysed in order to determine the high light-induced changes of emission bands attributed to different chlorophyll-protein complexes-F 735, emitted by photosystem I-light-harvesting complex I; and F 685 and F 695, emitted by photosystem II-light-harvesting complex II. Analysis of emission bands showed that high light treatment leads to a decrease of the area of band at 695 nm and a concomitant increase of intensity of the band at 735 nm. The involvement of different pigment pools (chlorophyll a and chlorophyll b) in the energy supply of both photosystems before and after photoinhibitory treatment was estimated on the basis of excitation fluorescence spectra. The dependence of the ratios F 735/F 685 and the band areas at 685 and 695 nm on the illumination time was studied at both temperatures. Data presented indicate that cholesterol incorporation stabilized the intersystem structure in respect to light-induced changes of fluorescence emission of PSI and PSII. It was shown that the effect of fluid properties of thylakoid membranes on the 77 K fluorescence characteristics of main pigment protein complexes of pea thyalkoid membranes depends on the temperature during high light treatment.  相似文献   

2.
To study the role of the long-wavelength chlorophylls (Chl) in photosystem I (PSI), the action spectra of P700 photooxidation at 293 and 77 K have been measured for PSI trimeric and monomeric complexes isolated from Spirulina platensis. The long-wavelength Chls which absorb in the region 710dash740 nm transfer excitation energy to the reduced P700 with the same efficiency as bulk antenna Chls, causing the oxidation of P700. The relative quantum yield of P700 photooxidation is about unity (293-77 K) even under the direct excitation of Chl absorbing at 735 nm (Chl735). At 77 K Chl735 exhibits a fluorescence band at 760 nm (F760) whose intensity is quenched under illumination of the PSI trimeric complexes from Spirulina. The relative quantum yield of F760 quenching is not dependent on the wavelength of excitation in the region 620–750 nm. Since the value of the overlap integral between the band of F760 and the absorption band of the cation radical of P700 (P700+) is higher than that of the P700 band, it is suggested that Chl735 transfers energy to P700+ more efficiently than to reduced P700; energy transfer to P700+ causes the quenching of F760. A linear relationship between the photooxidation rate of P700 and the fraction of P700+ at 293 K indicates that the energy exchange between PSI subunits of the trimer is negligible. Thus, the antenna of PSI trimers of Spirulina is organized in separate photosynthetic units.  相似文献   

3.
The activity of light-induced oxygen consumption, absorption spectra, low temperature (77 K) chlorophyll fluorescence emission and excitation spectra were studied in suspensions of photosystem (PS) I submembrane particles illuminated by 2000 microE m(-2) s(-1) strong white light (WL) at 4 degrees C. A significant stimulation of oxygen uptake was observed during the first 1-4 h of photoinhibitory treatment, which rapidly decreased during further light exposure. Chlorophyll (Chl) content gradually declined during the exposure of isolated PSI particles to strong light. In addition to the Chl photobleaching, pronounced changes were found in Chl absorption and fluorescence spectra. The position of the major peak in the red part of the absorption spectrum shifted from 680 nm towards shorter wavelengths in the course of strong light exposure. A 6-nm blue shift of that peak was observed after 5-h illumination. Even more pronounced changes were found in the characteristics of Chl fluorescence. The magnitude of the dominating long-wavelength emission band at 736 nm located in untreated particles was five times reduced after 2-h exposure, whereas the loss in absolute Chl contents did not exceed 10% of its initial value. The major peak in low-temperature Chl fluorescence emission spectra shifted from 736 to 721 nm after 6-h WL treatment. Individual Chl-protein complexes differed in the response of their absorption spectra to strong WL. Unlike light-harvesting complexes (LHC), LHCI-680 and LHC-730, which did not exhibit changes in the major peak position, its maximum was shifted from 678 to 671 nm in CPIa complex after PSI submembrane particles were irradiated with strong light for 6 h. The results demonstrated that excitation energy transfer represents the stage of photosynthetic utilization of absorbed quanta which is most sensitive to strong light in isolated PSI particles.  相似文献   

4.
The effect of oxygen concentration on both absorption and chlorophyll fluorescence spectra was investigated in isolated pea thylakoids at weak actinic light under the steady-state conditions. Upon the rise of oxygen concentration from anaerobiosis up to 412 microM a gradual absorbance increase around both 437 and 670 nm was observed, suggesting the disaggregation of LHCII and destacking of thylakoids. Simultaneously, an increase in oxygen concentration resulted in a decline in the Chl fluorescence at 680 nm to about 60% of the initial value. The plot of normalized Chl fluorescence quenching, F(-O(2))/F(+O(2)), showed discontinuity above 275 microM O(2), revealing two phases of quenching, at both lower and higher oxygen concentrations. The inhibition of photosystem II by DCMU or atrazine as well as that of cyt b(6)f by myxothiazol attenuated the oxygen-induced quenching events observed above 275 microM O(2), but did not modify the first phase of oxygen action. These data imply that the oxygen mediated Chl fluorescence quenching is partially independent on non-cyclic electron flow. The second phase of oxygen-induced decline in Chl fluorescence is diminished in thylakoids with poisoned PSII and cyt b(6)f activities and treated with rotenone or N-ethylmaleimide to inhibit NAD(P)H-plastoquinone dehydrogenase. The data suggest that under weak light and high oxygen concentration the Chl fluorescence quenching results from interactions between oxygen and PSI, cyt b(6)f and Ndh. On the contrary, inhibition of non-cyclic electron flow by antimycin A or uncoupling of thylakoids by carbonyl cyanide m-chlorophenyl hydrazone did not modify the steady-state oxygen effect on Chl fluorescence quenching. The addition of NADH protected thylakoids against oxygen-induced Chl fluorescence quenching, whereas in the presence of exogenic duroquinone the decrease in Chl fluorescence to one half of the initial level did not result from the oxygen effect, probably due to oxygen action as a weak electron acceptor from PQ pool and an insufficient non-photochemical quencher. The data indicate that mechanism of oxygen-induced Chl fluorescence quenching depends significantly on oxygen concentration and is related to both structural rearrangement of thylakoids and the direct oxygen reduction by photosynthetic complexes.  相似文献   

5.
The origin of heat-induced chlorophyll fluorescence rise that appears at about 55-60 degrees C during linear heating of leaves, chloroplasts or thylakoids (especially with a reduced content of grana thylakoids) was studied. This fluorescence rise was earlier attributed to photosystem I (PSI) emission. Our data show that the fluorescence rise originates from chlorophyll a (Chl a) molecules released from chlorophyll-containing protein complexes denaturing at 55-60 degrees C. This conclusion results mainly from Chl a fluorescence lifetime measurements with barley leaves of different Chl a content and absorption and emission spectra measurements with barley leaves preheated to selected temperatures. These data, supported by measurements of liposomes with different Chl a/lipid ratios, suggest that the released Chl a is dissolved in lipids of thylakoid membranes and that with increasing Chl a content in the lipid phase, the released Chl a tends to form low-fluorescing aggregates. This is probably the reason for the suppressed fluorescence rise at 55-60 degrees C and the decreasing fluorescence course at 60-75 degrees C, which are observable during linear heating of plant material with a high Chl a/lipid ratio (e.g. green leaves, grana thylakoids, isolated PSII particles).  相似文献   

6.
Changes in the room-temperature emission spectrum of chlorophyll (Chl) were analyzed using fast diode-array recordings during the Kautsky effect in mature and in greening barley leaves. In mature leaves, the comparison of F(O) (basal level of fluorescence yield at transient O) and F(M) (maximum level of fluorescence yield at transient M) spectra showed that the relative amplitude of total variable fluorescence was maximal for the 684 nm Photosystem II (PSII) band and minimal for the 725 nm Photosystem I band. During the increase from F(O) to F(M), a progressive redshift of the spectrum of variable fluorescence occurred. This shift reflected the different fluorescence rise kinetics of different layers of chloroplasts inside the leaf. This was verified by simulating the effect of screening on the emission spectrum of isolated chloroplasts and by experiments on greening leaves with low Chl content. In addition, experiments performed at different greening stages showed that the presence of uncoupled Chl at early-greening stages and light-harvesting complex II (LHCII) at later stages have detectable but minor effects on the shape of room-temperature emission spectra. When strong actinic light was applied to mature green leaves, the slow fluorescence yield, which declined from F(M) to F(T) (steady-state level of fluorescence yield at transient T), was accompanied by a slight redshift of the 684 nm PSII band because of nonphotochemical quenching of short-wavelength-emitting Chl ascribed to LHCII.  相似文献   

7.
Abstract— In order to study the formation of photochemical systems in the early phase of greening of barley leaves, we examined the changes in chlorophyll (Chl) spectral components of the absorption spectrum of greening tissues using a curvc analysis method. Peak positions of the fourth-derivative spectrum were changing during the first 30 min of illumination hut became stable thereafter. Results of curve analysis showed that about half of the spectral components of mature leaves were already found at 30 min after onset of illumination, and the rest appeared by 4 h. After 30 min the half widths of some spectral componcnts changed slightly. The 683 nm form of Chl a of the photosystem 11 (PSII) core was present after 30 min of illumination and increased up to 2 h, followed by a decrease. The 641 nm form of Chl u of photosystem I (PSI) appeared at 30 min and increased until 2.5 h. The 699 nm form of Chl a also appeared at 1.5 h. The 640 nm form of Chl b appeared at 2 h, while the 649 nm Chl b form was found earlier (1.5 h). Both components were increasing with prolonged time of illumination. Finally, the 704 nm form of Chl a characteristic of the PSI peripheral antenna appeared at 4 h of greening. Ruorescence of PSI and PSII began to appear at 1 and 2 h, respectively. These spectral changes were discussed in relation to the formation of chlorophyll-protein complexes and the development of photochemical activities.  相似文献   

8.
Abstract— Light-induced quenching of the low temperature fluorescence emission from photosystem II (PS II) at 695 nm ( F 695) has been observed in chloroplasts and whole leaves of spinach. Photosystem I (PS I) fluorescence emission at 735 nm ( F 735) is quenched to a lesser degree but this quenching is thought to originate from PS II and is manifest in a reduced amount of excitation energy available for spillover to PS I. Differential quenching of these two fluorescence emissions leads to an increase in the F 735/ F 685 ratio on exposure to light at 77 K. Rewarming the sample from -196°C discharges the thermoluminescence Z-band and much of the original unquenched fluorescence is recovered. The relationship between the thermoluminescence Z-band and the quenching of the low temperature fluorescence emission ( F 695) is discussed with respect to the formation of reduced pheophytin in the PS II reaction center at 77 K.  相似文献   

9.
Plectonema boryanum UTEX 485 cells were grown at 29 degrees C and 150 mumol m-2 s-1 photosynthetically active radiation (PAR) and exposed to PAR combined with ultraviolet-A radiation (UV-A) at 15 degrees C. This induced a time-dependent inhibition of photosystem II (PSII) photochemistry measured as a decrease of the chlorophyll a fluorescence ratio, Fv/Fm, to 50% after 2 h of UV-A treatment compared to nontreated control cells. Exposure of the same cells to PAR combined with UV-A + ultraviolet-B radiation (UV-B) caused only a 30% inhibition of PSII photochemistry relative to nontreated cells. In contrast, UV-A and UV-A + UV-B irradiation of cells cultured at 15 degrees C and 150 mumol m-2 s-1 had minimal effects on the Fv/Fm values. However, cells grown at 15 degrees C and lower PAR irradiance (6 mumol m-2 s-1) exhibited similar inhibition patterns of PSII photochemistry as control cells. The decreased sensitivity of PSII photochemistry of P. boryanum grown at 15 degrees C and 150 mumol m-2 s-1 to subsequent exposure to UV radiation relative to either control cells or cells grown at low temperature but low irradiance was correlated with the following: (1) a reduced efficiency of energy transfer to PSII reaction centers; (2) higher levels of a carotenoid tentatively identified as myxoxanthophyll; (3) the accumulation of scytonemin and mycosporine amino acids; and (4) the accumulation of ATP-dependent caseinolytic proteases. Thus, acclimation of P. boryanum at low temperature and moderate irradiance appears to confer significant resistance to UV-induced photoinhibition of PSII. The role of excitation pressure in the induction of this resistance to UV radiation is discussed.  相似文献   

10.
Abstract— Heat-induced changes of the characteristics of fluorescence spectra of Anacystis nidulans cells were studied after 39°C-grown cells were heated at 55°C. Heat-treatment of the cells induced no changes in the absorption properties or photosystem I-catalyzed cytochrome oxidation, but induced a dramatic change in the fluorescence characteristics of the cells. The low temperature fluorescence emission spectra of heated cells showed a large increase of fluorescence emission at683–685 nm (F683) and at 695 nm, while the bands at 660 nm (allophycocyanin) and at 718 nm (chlorophyll a of photosystem I) were not affected when the cells were excited with light absorbed by phycobilins. When the cells were heated for various periods, a progressive increase of the intensity of F683 occurred with the loss in oxygen evolution capacity. The increase of the F683 band was observed prior to the increase of the F695 band. Quenching of emission spectra by the addition of quinones indicates that the F683 band emanated mainly from a long wavelength form of allophycocyanin. Excitation spectra of heated cells measured at 77 K showed that light absorbed by phycobilins was effective in exciting F685, F695, and F715 emission. A possible energy distribution pathway in Anacystis nidulans is discussed.  相似文献   

11.
With the advent of photoelectric devices (photocells, photomultipliers) in the 1930s, fluorometry of chlorophyll (Chl) a in vivo emerged as a major method in the science of photosynthesis. Early researchers employed fluorometry primarily for two tasks: to elucidate the role in photosynthesis, if any, of other plant pigments, such as Chl b, Chl c, carotenoids and phycobilins; and to use it as a convenient inverse measure of photosynthetic activity. In pursuing the latter task, it became apparent that Chl a fluorescence emission is influenced (i) by redox active Chl a molecules in the reaction center of photosystem (PS) II (photochemical quenching); (ii) by an electrochemical imbalance across the thylakoid membrane (high energy quenching); and (iii) by the size of the peripheral antennae of weakly fluorescent PSI and strongly fluorescent PSII in response to changes in the ambient light (state transitions). In this perspective we trace the historical evolution of our awareness of these concepts, particularly of the so-called 'State Transitions'.  相似文献   

12.
Excitation spectra of chlorophyll- a (Chl- a ) fluorescence in intact cells of Cryptomonas ovata, Chroomonas pauciplastida and Chroomonas salina were determined at 77 K. For all species the excitation spectra for emission from Chl- a associated with photosystem II (PSII) showed increased contributions by a carotenoid (493 nm) and phycobiliproteins, and decreased contributions by carotenoid (417 nm, 505 nm) and Chl- a (445 nm) as compared to excitation spectra for emission from Chl- a associated with photosystem I (PSI). Excitation spectra of C. salina and C. ovata showed an increased contribution by Chl- c 2 to PSII Chl- a fluorescence emission. In all three species the absorbance band positions of Chl- a , as determined from the excitation spectra, were similar to those previously described in green plants. green algae and phycobilisome-containing organisms. Time-resolved 77 K fluorescence emission spectra of C. ovata and C. salina showed successive emission from both phycoerythrin and Chl- c 2, PSII Chl- a , and PSI Chl- a. C. pauciplastida showed successive emission from phycocyanin, PSII Chl- a , and PSI Chl- a. Spectral red-shifts with time were observed for the phycobiliprotein peaks in all three species. The fluorescence decay of phycoerythrin in C. ovata and C. salina was faster than that of phycocyanin in C. pauciplastida. The results are discussed in relation to the organization of the antenna pigments of PSII and PSI in the cryptophyte algae.  相似文献   

13.
Abstract— An undissociated photosystem I complex may be isolated from spinach thylakoids by mild gel electrophoresis (CP1a) or Triton X-100. CP1a has a Chl a / b ratio of 11 and a Chl/P700 ratio of 120. while the Triton X-100 PS I complex (Chl a / b ratio of 5.9) has a larger antenna unit size (Chl/P700 ratio of 180). None of the Chl a / b -proteins of the main light-harvesting complex (apoproteins of 30–27 kD) are present in CP1a, and they account for less than 10% of the total chlorophyll in the Triton X-100 PS I complex. Instead, these PS I complexes have specific, but as yet little characterized, Chi a / b -proteins (apoproteins in the 26–21 kD range). With both PS I complexes, Chi b transfers light excitation to the 735 nm low temperature fluorescence band characteristic of photosystem I. We suggest that Chi b is an integral but minor component of photosystem I.  相似文献   

14.
Abstract— The distribution of absorbed light and the turnover of electrons by the two photosystems in spinach chloroplasts was investigated. This was implemented upon quantitation of photochemical reaction centers, chlorophyll antenna size and composition of each photosystem (PS), and rate of light absorption in situ. In spinach chloroplasts, the photosystem stoichiometry was PSIIJPSIIα/PSIIβ/PSI= 1.3/0.4/1.0. The number (N) of chlorophyll (a+b) molecules associated with each PS was N(PSIIα)/N(PSIIβ)/N(PSI)=230/100/200, i.e. about 65% of all Chl is associated with PSII and about 35% with PSI. Light absorption by PSII in vivo is selectively attenuated at the molecular, membrane and leaf levels, (a) The rate of light absorption by PSII was only 0.85 that of PSI because of the lower rate of light absorption by Chl b as compared to Chl a (approximately 80% of all Chl b in the chloroplast is associated with PSII). (b) The exclusive localization of PSIIα in the membrane of the grana partition regions and of PSI in intergrana lamellae resulted in a differential “sieve effect” or “flattening of absorbance” by the photosystems in the two membrane regions. Due to this phenomenon, the rate of light absorption by PSII was lower than that of PSI by 15-20%. (c) Selective filtering of sunlight through the spinach leaf results in a substantial distortion of the effective absorbance spectra and concomitant attenuation of light absorption by the two photosystems. Such attenuation was greater for PSII than for PSI because the latter benefits from light absorption in the 700-730 nm region. It is concluded that, in spite of its stoichiometric excess in spinach chloroplasts, light absorption by PSII is not greater than that by PSI due to the different molecular composition of the two light-harvesting antenna systems, due to the localization of PSII in the grana, and also because of the light transmission properties through the leaf. The elevated PSII/PSI reaction center ratio of 1.7 and the association of 65% of all Chl with PSII help to counter the multilevel attenuation of light absorption by PSII and ensure a balanced PSII/PSI electron turnover ratio of about 1:1.  相似文献   

15.
The spectral characteristics of chlorophyll fluorescence and absorption during linear heating of barley leaves within the range 25-75 degreesC (fluorescence temperature curve, FTC) were studied. Leaves with various content of light harvesting complexes (green, Chl b-less chlorina f2 and intermittent light grown) revealing different types of FTC were used. Differential absorption, emission and excitation spectra documented four characteristic phases of the FTC. The initial two FTC phases (a rise in the 46-49 degreesC region and a subsequent decrease to about 55 degreesC) mostly reflected changes in the fluorescence quantum yield peaking at about 685 nm. A steep second fluorescence rise at 55-61 degreesC was found to originate from a short-wavelength Chl a spectral form (emission maximum at 675 nm) causing a gradual blue shift of the emission spectra. In this temperature range, a clear correspondence of the blue shift in the emission and absorption spectra was found. We suggest that the second fluorescence rise in FTC reflects a weakening of the Chl a-protein interaction in the thylakoid membrane.  相似文献   

16.
Abstract— –Fluorescence emission changes (measured at – 196°C) of Ricinus chloroplasts incubated in isolation medium, and of chloroplasts from algae and higher plants incubated in Ricinus leaf extract, are described. Such incubation results in a transformation of the three-banded emission spectrum (F735, F698, F685) into a virtually one-banded spectrum, with maximum at 698 nm. That these changes are a consequence of the conversion (deaggregation) of the form of chlorophyll giving rise to F735 into a form contributing to fluorescence at 698 nm is suggested on the basis of room temperature absorption and low temperature fluorescence excitation studies, made concomitantly with the low temperature emission studies.  相似文献   

17.
Low temperature (77-90 K) measurements of absorption spectral changes induced by red light illumination in isolated photosystem II (PSII) reaction centers (RCs, D1/D2/Cyt b559 complex) with different external acceptors and in PSII core complexes have shown that two different electron donors can alternatively function in PSII: chlorophyll (Chl) dimer P(680) absorbing at 684 nm and Chl monomer Chl(D1) absorbing at 674 nm. Under physiological conditions (278 K) transient absorption difference spectroscopy with 20-fs resolution was applied to study primary charge separation in spinach PSII core complexes excited at 710 nm. It was shown that the initial electron transfer reaction takes place with a time constant of ~0.9 ps. This kinetics was ascribed to charge separation between P(680)* and Chl(D1) absorbing at 670 nm accompanied by the formation of the primary charge-separated state P(680)(+)Chl(DI)(-), as indicated by 0.9-ps transient bleaching at 670 nm. The subsequent electron transfer from Chl(D1)(-) occurred within 13-14 ps and was accompanied by relaxation of the 670-nm band, bleaching of the Pheo(D1) Q(x) absorption band at 545 nm, and development of the anion-radical band of Pheo(D1)(-) at 450-460 nm, the latter two attributable to formation of the secondary radical pair P(680)(+)Pheo(D1)(-). The 14-ps relaxation of the 670-nm band was previously assigned to the Chl(D1) absorption in isolated PSII RCs [Shelaev, Gostev, Nadtochenko, Shkuropatov, Zabelin, Mamedov, Semenov, Sarkisov and Shuvalov, Photosynth. Res. 98 (2008) 95-103]. We suggest that the longer wavelength position of P(680) (near 680 nm) as a primary electron donor and the shorter wavelength position of Chl(D1) (near 670 nm) as a primary acceptor within the Q(y) transitions in RC allow an effective competition with an energy transfer and stabilization of separated charges. Although an alternative mechanism of charge separation with Chl(D1)* as the primary electron donor and Pheo(D1) as the primary acceptor cannot be ruled out, the 20-fs excitation at the far-red tail of the PSII core complex absorption spectrum at 710 nm appears to induce a transition to a low-energy state P(680)* with charge-transfer character (probably P(D1)(δ+)P(D2)(δ-)) which results in an effective electron transfer from P(680)* (the primary electron donor) to Chl(D1) as the intermediary acceptor.  相似文献   

18.
The aquatic higher plant Spirodela oligorrhiza , which contains proplastids when grown in the dark, was used to study light-dependent chloroplast development. Low-temperature (77 K) and room temperature fluorescence were utilized in situ on whole plants to examine plastid development. The dark-grown plants contain two 77 K fluorescence peaks, at 633 nm (F633) and at 657 nm (F657), with F633 dominating. The F657 species represents protochlorophyllide that is bound to protochloro-phyllide oxidoreductase. It was rapidly phototrans-formed to chlorophyllide (within 5 s) via a monomolec-ular reaction. Free protochlorophyllide (F633) was converted to chlorophyllide during a 3 h exposure to light. Photosystem (PS) assembly in Spirodela could be detected 2 h after the plants were first exposed to light, with the PSII reaction center (77 K fluorescence at 684 nm) appearing slightly before the PSI reaction center (77 K fluorescence at 725 nm). After the first reaction centers were formed the antenna complexes were added; the light-harvesting complex (LHC) I of PSI appeared after 8 h, and 47 kDa chlorophyll protein of PSII appeared between 12 h and 24 h. After 30 h of exposure to light, the plants acquired the ability to perform a light state transition, marking the appearance of functional LHCII complexes in the developing chloroplast. Finally, it was found that photosynthetic activity, as measured by room temperature chlorophyll fluorescence, accelerated con-comitantly with detection of the antenna complexes. Therefore, although reaction centers are detected very early during the proplastid to chloroplast conversion, they may have little activity or be unstable until the antennae are present.  相似文献   

19.
The consequence of elevated temperatures in the range of 39-51 degrees C on the steady-state rate of light-induced electron transport through photosystem I (PSI) supported by stromal reductants was studied in intact barley leaves using photoacoustic and chlorophyll fluorescence techniques. Measurable electron flow through PSI in diuron-treated leaves occurred only after exposure to temperatures above 37 degrees C. The steady-state rate of the above diuron-insensitive electron flow with methyl viologen as electron acceptor was estimated to be 3.7 mu eq m-2 s-1 or 0.018 mu eq mumol chlorophyll-1 s-1 in leaves exposed for 5 min to 45 degrees C.  相似文献   

20.
Site-directed psbA mutants at the tyrosine Y112 position have been generated in Synechocystis PCC6803 cells. The mutation Y112F does not affect photosystem II (PSII) activity as compared with control 4 delta 1K cells. However, the Y112L mutant exhibits a photosynthetically impaired phenotype. PSII activity is not detectable in this mutant when grown at 30 mumol photons m-2 s-1, while low levels of the D1 and D2 proteins and oxygen evolution activity are present in the mutant cells grown at a low light intensity (0.5-1 mumol m-2 s-1). The recombination of the QB-/S2,3 states of PSII in the Y112L mutant cells as detected by thermoluminescence (TL) is altered. The TL signal emission maximum of these cells due to charge recombination of the S2,3/QB- occurs at 20 degrees C as compared to 35-40 degrees C for the wild-type cells, indicating a possible change in the S2,3/Yz equilibrium. The Y112L mutant cells are rapidly photoinactivated and impaired in the recovery of the PSII activity. These results suggest that replacement of the aromatic residue at position Y112 by a hydrophobic amino acid may alter the function of the donor-side activity and affects the degradation and replacement of the PSII core proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号