首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cholinesterase-responsive supramolecular vesicle   总被引:1,自引:0,他引:1  
Enzyme-responsive, amphiphilic self-assembly represents one of the increasingly significant topics in biomaterials research and finds feasible applications to the controlled release of therapeutic agents at specific sites where the target enzyme is located. The supramolecular approach, using "superamphiphiles", provides a smart way to fabricate drug delivery systems responsive to enzymatic catalysis. In this work based on the concept of supramolecular chemistry, we report an enzyme-responsive vesicle using p-sulfonatocalix[4]arene as the macrocyclic host and natural enzyme-cleavable myristoylcholine as the guest molecule. The complexation of p-sulfonatocalix[4]arene with myristoylcholine directs the formation of a supramolecular binary vesicle, which is dissipated by cholinesterase with high specificity and efficiency. Cholinesterase is a key protein overexpressed in Alzheimer's disease, and therefore, the present system may have potential for the delivery of Alzheimer's disease drugs.  相似文献   

2.
Electrospinning procedures such as blend electrospinning, coaxial electrospinning, and emulsion electrospinning have been used for the fabrication of electrospun nanofibers (ENFs) for biomedical applications. These ENFs are attracted great interest especially in drug delivery applications due to their small size, high surface area-to-volume, and porosity. The aim of this review is to focus on the controlled release mechanism among the different electrospinning methods, and the selectivity of hydrophilic, water-soluble polymers as a carrier for drug. The mechanism for the drug delivery depends mainly on the method of drug loading, polymeric interactions, and the nature of polymer swelling, erosion, or degradation. This review compressed on the literature survey about the fabrication of nanofibers by different electrospinning methods, factors affecting the nanofiber morphologies, selectivity of polymeric blends for successful controlled release behavior, and the mechanism involved in the drug release steps.  相似文献   

3.
In this study, a biodegradable in situ gel-forming controlled drug delivery system based on a thermosensitive methoxy polyethylene glycol-co-poly (lactic acid-co-aromatic anhydride) (mPEG-PLCPPA) hydrogel was studied. The hydrogels were formed by micelle aggregation with rising temperature. The hydrogels underwent a temperature-dependent sol–gel–sol transition, which was a flowing sol at ambient temperature and a non-flowing gel at the physiological body temperature. The residual weight and pH value changes after degradation and the viscosity properties of the hydrogel were investigated. The in vitro release behavior of vancomycin from the mPEG-PLCPPA hydrogels at different concentrations was also investigated. The results showed that the mPEG-PLCPPA amphiphilic copolymer could self-assemble to form micelles at low concentrations, and that the particle sizes gradually increased with increasing temperature. The hydrogel maintained a stable degradation rate and provided a moderate pH microenvironment after degradation for 30 days. Vancomycin sustained a stable release profile from the hydrogel over a 10-day period. Furthermore, good biocompatibility was proven by MTT assay and live and dead test. Therefore, the mPEG-PLCPPA hydrogel shows promise as an injectable local antibiotic delivery system.  相似文献   

4.
(Bio)degradation in response to external stimuli (stimuli-responsive degradation, SRD) is a desired property in constructing novel nanostructured materials. For polymer-based multifunctional drug delivery applications, the degradation enables fast and controlled release of encapsulated therapeutic drugs from delivery vehicles in targeted cells. It also ensures the clearance of the empty device after drugs are delivered to the body. This review summarizes recent development of various strategies to the design and synthesis of self-assembled micellar aggregates based on novel amphiphilic block copolymers having different numbers of stimuli-responsive cleavable elements at various locations. These cleavable linkages including disulfide, acid-labile, and photo-cleavable linkages are incorporated into micelles, and then are cleaved in response to cellular triggers such as reductive reaction, light, and low acid. The well-designed SRD micelles have been explored as controlled/enhanced delivery vehicles of drugs and genes. For future design and development of effective stimuli-responsive degradable micelles toward tumor-targeting delivery applications in vivo, a high degree of control over degradation for tunable release of encapsulated anticancer drugs as well as bioconjugation for active tumor-targeting is required.  相似文献   

5.
The aim of this work is to develop a novel biocompatible drug delivery carrier and tissue engineering scaffold with the ability of controlled drug release and also tissue regeneration. We have synthesized N-(2-hydroxypropyl)methacrylamide and 2-(dimethylamino)ethyl methacrylate copolymer-based hydrogels loaded with doxorubicin and tested in vitro. The manifestation of temperature sensitivity is noted with a sharp decrease or increase in hydrogel optical transparency that happens with the temperature exceeding a critical transition value. The drug release profile exhibited pH-sensitive behavior of the hydrogel. The hydrolytic degradation of gel and in vitro studies of polymer–doxorubicin conjugate and doxorubicin release from hydrogel matrix indicated that hydrogels were stable under acidic conditions (in buffers at pH 4.64 and 6.65). In both drug forms, polymer–doxorubicin conjugate and free doxorubicin could be released from the hydrogel scaffold at a rate depending directly on either the rate of drug diffusion from the hydrogel or rate of hydrogel degradation or at rate controlled by a combination of the both processes. In vitro analysis showed homogenous cell attachment and proliferation on synthesized hydrogel matrix. In vivo implantation demonstrated integration of the gel with the surrounding tissue of mice within 2 weeks and prominent neo-angiogenesis observed in the following weeks. This multifunctional hydrogels can easily overcome biological hurdles in the in vivo conditions where the pH range changes drastically and could attain higher site-specific drug delivery improving the efficacy of the treatment in various therapeutical applications, especially in cancer therapy, and could also be used as tissue engineering scaffold due to its porous interconnected and biocompatible behavior.  相似文献   

6.
In this paper, the properties of the complete degradation process of newly synthesized multi-block 2.0 G-polyamidoamine-double bond (PAMAM-DB) and resoluble poly (ethylene glycol) -co- poly (glycolic acid) -co- methacryloyl chloride (PEG-co-PGA-co-DB, 4KG5-DB) macromonomers were reported. Rectangular shaped samples were prepared by crosslinking the components using both chemical and photo initiators and exposure to UV light. The aims of the study were to examine the effects of the vitro degradation and drug delivery of the crosslinking group on the properties of photocrosslinked hydrogels. The experimental variable was PAMAM-DB: 4KG5-DB ratio. The effects of this variable on local PH, water uptake, mass loss, and drug release were explored. Polymers were characterized by 1H NMR, 13C NMR, FT-IR, and SEM. Our study revealed that polymers with 40%, 50%, 60% 4KG5-DB (mass fraction) showed more excellent mechanical properties, 40% also showed outstanding vitro degradation properties. In vitro drug release, however, 60% drug released mechanism seemed to approach the Fickian diffusion and possessed more excellent drug release properties compared with formulation 40% and 50%. In general, an increase ratio of 4KG5-DB led to a higher density of tree-like polymer which resulted in slower of degradation and drug release. Incorporation of 4KG5-DB into the polymer was critical for maintaining integrity and increasing hydrophilicity during degradation. These results obtained suggest that this system could be potential as a material for bone replacement and controlled delivery of drugs.  相似文献   

7.
The drug delivery system enables the release of the active pharmaceutical ingredient to achieve a desired therapeutic response. Conventional drug delivery systems (tablets, capsules, syrups, ointments, etc.) suffer from poor bioavailability and fluctuations in plasma drug level and are unable to achieve sustained release. Without an efficient delivery mechanism, the whole therapeutic process can be rendered useless. Moreover, the drug has to be delivered at a specified controlled rate and at the target site as precisely as possible to achieve maximum efficacy and safety. Controlled drug delivery systems are developed to combat the problems associated with conventional drug delivery. There has been a tremendous evolution in controlled drug delivery systems from the past two decades ranging from macro scale and nano scale to intelligent targeted delivery. The initial part of this review provides a basic understanding of drug delivery systems with an emphasis on the pharmacokinetics of the drug. It also discusses the conventional drug delivery systems and their limitations. Further, controlled drug delivery systems are discussed in detail with the design considerations, classifications and drawings. In addition, nano-drug delivery, targeted and smart drug delivery using stimuli-responsive and intelligent biomaterials is discussed with recent key findings. The paper concludes with the challenges faced and future directions in controlled drug delivery.  相似文献   

8.
Mesoporous silica nanoparticles (MSNPs) have been widely used as drug carriers for stimuli‐responsive drug delivery. Herein, a catalysis screening technique was adopted for analyzing the effects of chain length, terminal group, and density of disulfide‐appended functional ligands on the surface of MSNPs on drug‐loading capacity and glutathione‐triggered drug‐release kinetics. The ligand with an intermediate length (5 carbon atoms) and a bulky terminal group (cyclohexyl) that complexes with theβ‐cyclodextrin ring showed the highest drug loading capacity as well as good release kinetics. In addition, decreasing the surface coverage of the functional ligands led to an enhancement in drug release. In vitro drug‐delivery experiments on a melanoma cell line (B16‐F10) by using the functionalized MSNPs further supported the conclusion. The results obtained may serve as a general guide for developing more effective MSNP systems for drug delivery.  相似文献   

9.
The development of new thin film fabrication techniques that allow for precise control of degradation and drug release properties could represent an important advance in the fields of drug delivery and biomedicine. Polyelectrolyte layer-by-layer (LBL) thin films can be assembled with nanometer scale control over spatial architecture and morphology, yet very little work has focused on the deconstruction of these ordered thin films for controlled release applications. In this study, hydrolytically degradable LBL thin films are constructed by alternately depositing a degradable poly(beta-amino ester) (polymer 1) and a series of model therapeutic polysaccharides (heparin, low molecular weight heparin, and chondroitin sulfate). These films exhibit pH-dependent, pseudo-first-order degradation and release behavior. The highly versatile and tunable properties of these materials make them exciting candidates for the controlled release of a wide spectrum of therapeutics.  相似文献   

10.
The release profiles of model drugs (propranolol HCl, diclofenac sodium, salicylic acid and sulfasalazine) from low molecular weight poly(d,l-lactic acid) [d,l-PLA] tablets immersed in buffer solutions were investigated in an attempt to explore the mechanism of the related phenomena. It was confirmed that drug release is controlled by diffusion through the polymer matrix and by the erosion of the polymer. The pH of the surrounding medium influences the drug solubility as well as swelling and degradation rate of the polymer and therefore the overall drug release process. Physicochemical interaction between d,l-PLA and drug is an additional factor which influences the degree of matrix swelling and therefore its porosity and diffusion release process. Propranolol HCl shows extended delivery time at both examined pH values (5.4 and 7.4) and especially at pH 7.4 where release was accomplished in 190 days, most probably due to its decreased solubility at higher pH values. The acidic drugs gave shorter delivery times especially at pH 7.4. A slower drug release rate and more extended delivery time at pH 7.4 in comparison with that at pH 5.4 was recorded for tablets loaded with diclofenac sodium and salicylic acid. The opposite effect was observed with samples loaded with propranolol HCl.  相似文献   

11.
Biodegradable polymers for microencapsulation of drugs   总被引:3,自引:0,他引:3  
Drug delivery has become increasingly important mainly due to the awareness of the difficulties associated with a variety of old and new drugs. Of the many polymeric drug delivery systems, biodegradable polymers have been used widely as drug delivery systems because of their biocompatibility and biodegradability. The majority of biodegradable polymers have been used in the form of microparticles, from which the incorporated drug is released to the environment in a controlled manner. The factors responsible for controlling the drug release rate are physicochemical properties of drugs, degradation rate of polymers, and the morphology and size of microparticles. This review discusses the conventional and recent technologies for microencapsulation of the drugs using biodegradable polymers. In addition, this review presents characteristics and degradation behaviors of biodegradable polymers which are currently used in drug delivery.  相似文献   

12.
In view of the pharmacological importance of dietary fibre, psyllium, to cure the constipation and diverticulitis, in the present study, an attempt has been made to modify psyllium polysaccharide with PVP to develop the hydrogel meant for slow and controlled drug delivery systems. The polymer was characterized by SEMs, FTIR, XRD, TGA and swelling studies. Swelling of hydrogels and drug (ciprofloxacin) release profile from the drug loaded hydrogels were determined for the evaluation of the swelling/release mechanism. Biomedical properties; biocompatibility and mucoadhesion of the hydrogels, were also studied. Swelling of the hydrogels and release of drugs from drug loaded hydrogels occurred through non-Fickian diffusion mechanism. Here it is pertinent to mention that both psyllium husk polysaccharide and antibiotic drug ciprofloxacin are used for gastrointestinal tract (GIT) problem, especially in case of diverticulitis. Hence, degradation of the polymer matrix and release of drug may exert the synergic effect and the present drug delivery system may act with enhanced potential.  相似文献   

13.
The determination of the temperature dependence of enzyme catalysis has traditionally been a labourious undertaking. We have developed a new approach to the classical Arrhenius parameter estimation by fitting the change in velocity under a gradual change in temperature. The evaluation with a simulated dataset shows that the approach is valid. The approach is demonstrated as a useful tool by characterizing the Bacillus pumilus LipA enzyme. Our results for the lipase show that the enzyme is psychrotolerant, with an activation energy of 15.3 kcal/mol for the chromogenic substrate para-nitrophenyl butyrate. Our results demonstrate that this can produce equivalent curves to the traditional approach while requiring significantly less sample, labour and time. Our method is further validated by characterizing three α-amylases from different species and habitats. The experiments with the α-amylases show that the approach works over a wide range of temperatures and clearly differentiates between psychrophilic, mesophilic and thermophilic enzymes. The methodology is released as an open-source implementation in Python, available online or used locally. This method of determining the activation parameters can make studies of the temperature dependence of enzyme catalysis more widely adapted to understand how enzymes have evolved to function in extreme environments. Moreover, the thermodynamic parameters that are estimated serve as functional validations of the empirical valence bond calculations of enzyme catalysis.  相似文献   

14.
In this work, INU, a natural polysaccharide, has been chemically modified in order to obtain new photocrosslinkable derivatives. To reach this goal, INU has been derivatized with MA thus obtaining four samples (INU-MA derivatives) as a function of the temperature and time of reaction. An aqueous solution of the derivative INU-MA1 was irradiated by using a UV lamp with an emission range from 250 to 364 nm and without using photoinitiators. The obtained hydrogel showed a remarkable water affinity but it underwent a partial degradation in simulated gastric fluid. To overcome this drawback, INU-MA1 was derivatized with SA thus obtaining the INU-MA1-SA derivative designed to produce a hydrogel showing a low swelling and an increased chemical stability in acidic medium. Ibuprofen, as a model drug, was loaded by soaking into INU-MA1 and INU-MA1-SA hydrogels and its release from these matrices was evaluated in simulated gastrointestinal fluids. INU-MA1 hydrogel showed the ability to quickly release the entrapped drug thus indicating its potential as a matrix for an oral formulation. INU-MA1-SA hydrogel showed a pH-responsive drug delivery. Therefore it is a promising candidate for controlled drug release in the intestinal tract.  相似文献   

15.
Biodegradable pasty-type copolyesters with a relatively low molecular weight of 4500 were synthesized by direct copolycondensation of epsilon-caprolactone (CL) and delta-valerolactone (VL) in the absence of catalysts to evaluate in vivo capabilities of the polymer for implantable controlled release devices in drug delivery systems. The devices in cylindrical shape were prepared by the melt-pressing technique using pasty-type copoly(CL/VL) with 53 mol% CL unit, in which Estracyt and estramustine were used as a water soluble and insoluble drug, respectively. The degradation and drug release in vivo of the devices were examined by subcutaneous implantation in the backs of male rats. The degradation of the device was remarkably accelerated by the presence of hydrophilic Estracyt, and was slightly suppressed by hydrohobic estramustine. The estramustine release profile roughly corresponded to the polymer degradation one. It was found that the degradation of the polymer in the device was affected by hydrophilicity of the drug. A reasonable release of estramustine from the device was kept for a period of more than 20 weeks. Furthermore, the release of the drugs in vivo was able to lead to an atrophy of accessory sex organs such as ventral prostates (VP) and right-side seminal vesicle (SV), resulting in pharmacological influence.  相似文献   

16.
Herein, novel multi-responsive injectable polyester hydrogels were reported based on the diselenide-containing poly(ε-caprolactone) copolymers ((mPEG-PCL-Se)2). The (mPEG-PCL-Se)2 solution remained a free-flowing state at ambient temperature but spontaneously turned into a semisolid hydrogel upon heating to physiologic temperature. The phase transition temperature was examined to be dependent on the composition and aqueous concentration of the copolymers. More importantly, the thermo-responsive hydrogels were endowed with oxidation and reduction-triggered degradation by the incorporation of diselenide groups. Accordingly, the degradation of poly(ε-caprolactone)-based hydrogels was greatly improved and the rate of degradation was well regulated by the concentration of hydrogen peroxide (H2O2) or glutathione (GSH). This superior stimuli-responsive degradation could lead to an enhanced drug release of encapsulated drug (Doxorubicin, DOX). Thus the oxidation and reduction-triggered degradable diselenide-containing poly(ε-caprolactone) hydrogels would offer great potential for the controlled drug delivery.  相似文献   

17.
We designed, for the first time, an enzyme-triggered drug delivery system that is based on cytosine-phosphodiester-guanine oligodeoxynucleotide (CpG ODN)-capped hollow mesoporous silica (HMS) particles as carriers. Fluorescein dye was used as a model drug, and the fluorescein loading, amino-grafting and CpG ODN capping were evaluated by UV/Vis analysis, zeta potential and N(2) adsorption-desorption measurements and gel electrophoresis. The fluorescein loading capacity and CpG ODN capping amount were 37.7 and 39.6 μg mg(-1), respectively at the weight ratio of 10 Dye/HMS-NH(2)/CpG ODN. Importantly, fluorescein release can be triggered by the addition of deoxyribonuclease I (DNase I) for CpG ODN degradation, and the release rate can also be controlled by changing the DNase I concentration. Therefore, it might be a promising controlled drug delivery system for application in the field of biomedicine and cancer therapy.  相似文献   

18.
Mesoporous organosilica as drug delivery carriers capable of achieving improved cargo release, enhanced biodegradation, and direct imaging with prolonged circulation time and tracking cargo distribution is highly in demand for biomedical applications. Herein, we report a ditelluride-bridged mesoporous organosilica nanoparticle (DTeMSN)/polyethylene glycol-curcumin (PEG-CCM) nanocomposite through coassembly with oxidative/redox and self-fluorescent response. Tellurium is introduced into the silica framework for the first time as a drug delivery vehicle. In this case, the DTeMSNs as an inner core enable disassembly under oxidative and redox conditions via the cleavage of ditelluride bond, facilitating the drug release of doxorubicin (DOX) in a matrix degradation controlled manner. Through the systematical comparison of diselenide-bridged MSNs and DTeMSNs, DTeMSNs exhibit remarkable advantages in loading capacity, drug release, and degradation behavior, thereby significantly affecting the cytotoxicity and antitumor efficacy. The self-fluorescent response of PEG-CCM shell coated on the surface of DTeMSNs can real-timely track the cellular uptake, DOX release, and biodistribution owing to the intrinsic and stable fluorescence of CCM. Moreover, PEG-CCM could prolong circulation time, provide preferable drug accumulation in tumors, and increase antitumor efficacy of DOX-loaded DTeMSNs. Our findings are likely to enrich the family of organosilica that served as fluorescence-guided drug delivery carriers.  相似文献   

19.
A systematic investigation of the synthesis, physical properties, biodegradation, and drug release behavior of an aliphatic polynonanolactone from vegetable oil was performed. The chemical structure of the lactone monomers and polylactones were confirmed by NMR spectrometry and molecular weights were determined by gel permeation chromatography (GPC). The thermal behavior of the polymers was assessed by modulated differential scanning calorimetry (MDSC) and thermogravimetric analysis (TGA). The polynonanolactones are crystalline with melting enthalpies (ΔHm) ranging from 90 to 135 J/g. The crystalline nature of the polylactides was further evaluated by X‐ray diffraction (XRD) and peaks corresponding to planes (110), (200), and (210) were detected. The hydrolytic and enzymatic degradation properties of the polynonanolactones were studied and the degradation rate is comparable to that of widely used polycaprolactone. The enzyme proteinase K was used for the degradation of polynonanolactones. The extent of degradation was evaluated by scanning electron microscopy (SEM). Drug incorporation and release traits due to hydrolytic degradation of the polymer film was carried out with 5‐fluorouracil (5‐FU) as a model drug. This new class of polynonanolactones obtained from vegetable oil was demonstrated to be a potentially competent candidate to replace petroleum‐based polycaprolactone especially for drug delivery applications where slow release of drugs is a requisite. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6373–6387, 2009  相似文献   

20.
The incidence of compression conditions, porosity and polymer degradation on human growth hormone (hGH) release from PLGA implantable tablets was evaluated with the aim of gaining insight in the mechanism involved in drug delivery from biodegradable matrices. Tablets elaborated by direct compression of hGH with PLGA, applying various compression forces for different times, kept the integrity and the stability of the hormone. Tablet dimensions, viscoelastic properties, glass to rubber transition temperature (Tg), PLGA degradation rate and water uptake were analyzed in the freshly prepared implantable tablets as well as at several times during release test in phosphate buffer pH 7.4. Placebo tablets were also prepared to evaluate the incidence of hGH on the physicomechanical properties of the device and PLGA degradation rate. Porosity remarkably determined the amount of hGH released, through an effect on the easiness of water penetration in the tablet and on the beginning of PLGA degradation. The decrease in PLGA molecular weight during the first days in the release medium, despite of being minor, significantly conditioned hGH release rate. The more dramatic changes in PLGA molecular weight observed after 20 days in the release medium notably reduced the Tg and the viscous and elastic moduli of the tablets. The overall analysis of the events underwent by the tablets in contact with the aqueous medium was used to explain the drug release profile and may help to optimize the design of the PLGA-based implantable tablets as peptidic drug delivery systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号