首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thin films in the range 40-80 nm of a blend of PMMA with an azobenzene derivative have been studied directly during UV and blue light irradiation by atomic force microscopy (AFM), revealing highly reversible changes in the surface roughness and the film adhesion. UV light induces an ≈80% increase in surface roughness, whereas illumination by blue light completely reverses these changes. Based on the observed surface topography and transition kinetics a reversible mass flow mechanisms is suggested, where the polarity changes upon switching trigger a wetting-dewetting transition in a surface segregation layer of the chromophore. Similar AFM measurements of the pull-off force indicate a decrease upon UV and an increase after blue light illumination with a complex kinetic behavior: a rapid initial change, attributed to the change in the cis isomer fraction of the azobenzene derivative, and a more gradual change, indicative of slow structural reorganization.  相似文献   

2.
In this paper we demonstrated enhancement of photoinduced polarization rotation for improved transmission of laser light at low input intensities through a crossed polarized system. It is achieved by utilizing two azobenzene doped polymer thin films in tandem. As the input beam propagates through the films, its polarization rotation induced by each film is additive. We obtained polarization rotation of as much as 24° resulting in enhanced transmission compared to a single-film approach. In addition, this novel design is promising for use as a broadband nonlinear transmission system.  相似文献   

3.
Laser-induced periodic surface structures (LIPSS) were generated on oriented and amorphous thick, as well as on spin-coated thin, poly-carbonate films by polarized ArF excimer laser light. The influence of the film structure and thickness on the LIPSS formation was demonstrated. Below a critical thickness of the spin-coated films the line-shaped structures transformed into droplets. This droplet formation was explained by the laser-induced melting across the whole film thickness and subsequent de-wetting on the substrate. The thickness of the layer melted by laser illumination was computed by a heat-conduction model. Very good agreement with the critical thickness for spin-coated films was found. The original polymer film structure influences the index of refraction of the thin upper layer modified by the laser treatment, as was proven by the dependence of the structure’s period on the angle of incidence both for ‘s’- and ‘p’-polarized beams. The effect of the original surface roughness – grains in thick films or holes in thin films – was studied using atomic force microscopy. It was shown that the oblique incidence of ‘s’-polarized beams results in an intensity confinement in the direction of the forward scattering and in asymmetrical interference pattern formation around these irregularities. A new, two-dimensional grating-like structure was generated on spin-coated films. These gratings might be used as a special kind of mask. Received: 10 July 2001 / Accepted: 23 July 2001 / Published online: 30 August 2001  相似文献   

4.
《Current Applied Physics》2020,20(1):161-166
In this study, we discuss a method to embed PEDOT:PSS into DNA with a designated concentration of PEDOT:PSS and construction of PEDOT:PSS-embedded DNA thin films. In order to shed light on the interaction between PEDOT:PSS and DNA, optical spectroscopy measurements were performed. DNA-PEDOT:PSS thin films showed a broad absorption band around 800 nm which was associated with PEDOT:PSS. The electrical properties of DNA-PEDOT:PSS thin films were assessed. A significant enhancement in current for DNA-PEDOT:PSS thin films DNA was observed which agreed with the decrement in band gap of DNA-PEDOT:PSS thin films. For the energy storage capability and dielectric constant of DNA-PEDOT:PSS thin films, capacitance measurements were conducted. Frequency-dependent capacitance indicated enhancement in the capacitance and dielectric constant by electric polarization of PEDOT:PSS in a DNA thin film. Our approach may assist in development of various biosensors and electronic devices with specific functionalities based on biomaterials and conducting polymer complexes.  相似文献   

5.
Guest–host polymer thin films of polymethyl methacrylate (PMMA) incorporated with (4′-nitrobenzene)-3-azo-9-ethylcarbazole (NAEC) were fabricated by spin coating and then poled by the method of corona-onset poling at elevated temperature. The absorption mechanism of the polymeric film, which is very important for the optical transmission losses and directly relates to the orientation of chromophore NAEC in polymer PMMA, was investigated in detail. From the UV–visible absorption spectra for NAEC/PMMA film before and after being poled, we determined the change of absorption coefficient κ with the wavelength and approximately calculated the maximum absorption Amax as 3.46 for incident light propagating parallel through the film, i.e. the ordinary polarized light, which cannot be directly measured in the spectrophotometer.  相似文献   

6.
Polymer liquid crystals (PLC) with azobenzene moieties are promising materials for optical switching and image storage because the orientation of mesogens in thin films of this material may be modified by light.  相似文献   

7.
Linearly polarized light beam can rotate the trans-azobenzene molecules into cis-form resulting in inducing photoanisotropy. This property is used to control the transmission of nanosecond and picosecond laser pulses and also for holographic data storage applications. Studies were performed using four commercially available azobenzene dyes in different solvents and also in custom prepared nanoporous azobenzene Dendron films. Nanopores are created in a silica matrix and azobenzene molecules are attached to the inner walls of these pores to mimic solution like environment for the azobenzene molecules such that they can undergo photoinduced trans-cis-trans isomerization process at a faster rate.  相似文献   

8.
Thin films based on two different metal-organic systems are developed by MAPLE and their nonlinear optical applications are explored. A complex of o,o′-dihydroxy azobenzene with Cu2+ cation is found to organize as a non-central symmetric crystallite. A simple protocol is developed for the in situ fabrication of highly monodisperse copper-complex nanoparticles in a polymer film matrix of polyacrylic acid. The thin films were deposited on quartz substrates by MAPLE (matrix assisted pulsed laser evaporation) using a Nd:YAG laser working at 355 nm. Atomic force microscopy (AFM), Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and optical second harmonic generation (SHG) were performed on the samples. The optical limiting capability of the nanoparticle-embedded polymer film is investigated.  相似文献   

9.
Large increases of mobility of local segmental relaxation observed in polymer films as the film thickness is decreased, as evidenced by decreases of the glass temperature, are not found for relaxation mechanisms that have longer length scales including the Rouse relaxation modes and the diffusion of entire polymer chains. We show that the coupling model predictions, when extended to consider polymer thin films, are consistent with a large increase of the mobility of the local segmental motions and the lack of such a change for the Rouse modes and the diffusion of entire polymer chains. There are two effects that can reduce the coupling parameter of the local segmental relaxation in thin films. One is the chain orientation that is induced parallel to the surface when the film thickness h becomes smaller than the end-to-end distance of the chains and the other is a finite-size effect when h is no longer large compared to the cooperative length scale. Extremely thin ( ≈ 1.5 nm) films obtained by intercalating a polymer into layered silicates have thickness significantly less than the cooperative length scale near the bulk polymer glass transition temperature. As a result, the coupling parameter of the local segmental relaxation in such thin films is reduced almost to zero. With this plausible assumption, we show the coupling model can explain quantitatively the large decrease of the local segmental relaxation time found experimentally. Received 1 August 2001 and Received in final form 1 December 2001  相似文献   

10.
S. Bao 《Applied Surface Science》2007,253(14):6268-6272
Although Pd-capped Mg-Ni alloy switchable mirror thin films have potential applications in smart windows and optical switches, they degrade quickly and cannot be switched after about 150 cycles. This must be improved for practical use. In this study, we tested several polymer coatings on the surface of Pd/Mg4Ni switchable mirror thin films as a protective membrane and evaluated the optical switching property and durability. The polymer membrane is able to suppress the oxidization of Mg because it has an excellent gas separation characteristic. Polymer coating extended the switching durability of samples to about 1000 cycles. In addition, the transmittance of the thin film in the transparent state is improved by the coating.  相似文献   

11.
In an investigation of smart-window applications of switchable mirror thin films, Pd-capped magnesium-titanium thin films were prepared by dc magnetron sputtering. Their optical properties, switching durability and crystalline structures have been investigated. We show that Pd/Mg-Ti thin films with specific thicknesses are completely color-neutral in the transparent state and their optical switching properties are suitable for building and automobile window glass applications. The ternary hydrides of Mg(1-x)Tix thin films with Pd overlayers are identified by in situ X-ray diffraction measurements during a hydrogen gas loading of 4%. Pd/Mg(1-x)Tix thin film switchable mirrors show fast hydriding and dehydriding kinetics as compared to a Pd-capped pure Mg thin film due to the catalytic role of doped metallic Ti. PACS 75.20.En; 78.20.-e; 78.70.Ck; 42.70.-a  相似文献   

12.
Tin sulfide thin films have been grown on glass substrates by chemical bath deposition technique (CBD) at room temperature and irradiated with UV light source of wavelength 355 nm. The effect of UV illumination on the physical properties of the films was compared with that of the as-prepared film. Though the thickness of the films was unaltered after illumination, the structural, optical and electrical properties changed considerably. Structural studies showed the polycrystalline nature of the UV-illuminated sample, whereas the as-prepared film was mono crystalline. Both films were orthorhombic structure with Sn2S3 phase. The optical properties of the films were systematically studied using the optical absorbance and reflection spectra. Studies on the reflection spectra showed higher reflectance in visible and infrared region for the UV-illuminated films and lower reflectance in the infrared region for the as-prepared one. The variation of the refractive index of the samples was also analyzed. The optical absorption coefficient and the optical band gap energy of the films were evaluated. The irradiated film exhibited lower band gap of 1.74 eV than the value of as-prepared film, i.e., 1.77 eV. The measured resistivity of the tin sulfide thin films was found to be of the order of 108 and 10Ωcm for UV-illuminated and as-prepared films, respectively. The SEM images showed the presence of worm-like nanostructures with almost similar appearance in both the films.  相似文献   

13.
Using the spectrally resolved white light interferometry we present our experimental results on the measurement of the optical constants of thin polymer films coated on a transparent substrate. As an extension to our previous work (J. Opt. Soc. Am. B12, 1559 (1995)) on thick glass plates, we have shown here that this technique can be effectively applied to very thin polymer films also. We have improved the accuracy of our results by using the Sellmeier dispersion formula for fitting the data. From the width and position of the zero-order fringe and the frequency of modulations in the white light spectrum, the refractive indexn(λ) and thicknesst of the thin polymer films are calculated. To study the accuracies involved in the technique, PVA, PMMA and PS films of varied thicknesses are coated on glass plates and the measured values are compared with ellipsometer studies.  相似文献   

14.
吕业刚  梁晓琳  谭永宏  郑学军  龚跃球  何林 《物理学报》2011,60(2):27701-027701
采用金属有机物分解法在Pt/Ti/Si(111)基底上制备了退火温度分别为600℃,650℃,700℃的Bi3.15Eu0.85Ti3O12(BET)铁电薄膜,并对其结构及铁电性能进行了测试,再使用扫描探针显微镜对BET薄膜的电畴翻转进行了实时观测.BET薄膜c畴发生180°畴变的最小电压为+6V,而r畴由于其高四方性,即使极化电压增至+12V也不会发生翻转.薄膜的铁电性主要源于c畴的极化,随着退火温度的升高,c畴的区域面积增加,BET薄膜的剩余极化强度随之增大.退火温度为700℃的BET薄膜剩余极化强度达到84μC/cm2. 关键词: 铁电薄膜 电畴翻转 扫描探针显微镜  相似文献   

15.
Amorphous TaOx thin films were deposited at different temperatures, and the resistance switching properties of the Pt/TaOx/Pt structure were investigated. X‐ray photoelectron spectroscopy showed that the amount of Ta2O5 in the film decreased and the content of Ta suboxides increased substantially when the growth temperature was increased. Unipolar resistance switching near the anode was stable only for TaOx film grown at room temperature. The experimental results revealed the critical effect of the film composition on the resistance switching behavior of TaOx films. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Polymer films have been known to change their physical properties when film thickness is decreased below a certain value. The cause of this phenomenon is still unclear but it has been suggested that interactions and/or chain free-volume changes at the surface of the films are largely responsible for this behavior. In this paper, the effect of substrate interactions on the behavior of polymer thin films is evaluated quantitatively. The infrared spectra of nanothin polyethylene (PE) films were recorded as a function of temperature and amount of substrate covering the surface of the film. The evolution of specific bands in the CH2 rocking region of the spectra was used to determine the melting temperature (T m ) of the material. Results show different variations in T m depending on the nature of the substrate, indicating that interactions dominate free-volume considerations in PE thin films. By varying the amount of surface coverage, a quantitative estimate of the heat of interaction was determined, which confirmed the importance of surface interactions.  相似文献   

17.
Qian  Xinming  Zhang  Xintong  Bai  Yubai  Li  Tiejin  Tang  Xinyi  Wang  Erkang  Dong  Shaojun 《Journal of nanoparticle research》2000,2(2):191-198
-Fe2O3 single crystal thin films have been prepared from 45nm diameter colloid. These thin nanocrystalline films exhibit a typical behavior of n-type semiconductor material because of the anodic photocurrent generation. The anodic photocurrent response upon illumination and the reversal spike of cathodic current upon the light switched off suggests that the electrons can flow in both directions and no space charge layer exists at the thin film/electrolyte interface. The decreased photocurrent responses of thicker films can be explained by the electric resistance effect and recombination effect. Moreover, the thicker film will lead to a poor photocurrent response for short wavelength light. Considering the use of sunlight, the thin film thickness should be controlled to an optimal value.  相似文献   

18.
Tang Xu  Chunping Zhang  Shengwen Qi 《Optik》2008,119(13):643-647
The all-optical switching polymer thin films with azobenzene dye ethyl orange as the guest material and polyvinyl alcohol (PVA) as the host material were prepared by adulteration and spin-coating methods. The all-optical switching characteristics of the samples were measured at different intensities and modulation frequencies of the pump beam (532 nm, CW); the influence of doping concentration on the all-optical switching effect of the films was studied. It is shown that, under room temperature conditions and with a low pump power of 6 mW, the all-optical switch has a response time of about 2 ms and a modulation depth of 45%, and the maximal modulation depth reaches 90%. In addition, it is found that samples with higher doping concentration show a stronger all-optical switching effect but a larger background signal, and good switching performance is obtained by choosing the doping concentrations from 0.8% to 2% of the sample.  相似文献   

19.
A kind of photodeformable polymer material, crosslinked liquid-crystalline polymer (CLCP) incorporated with azobenzene moieties, is studied as microvalve membrane actuator for microfluidic system applications. In the photomechanical analysis, the photo-induced bending effect of such polymer film is equivalent to a moment T m and an axial force N m applied on it, which are related to irradiation time and intensity of the driving UV light. A linear elastic beam model is established to calculate the maximal force that the valve actuator can resist and to analyze the deformation at any irradiation time in FEA. An experimental setup is built to record the flow rate in one operate cycle under various irradiation or preload conditions. The open time can reach 8 s and the close time 6 s. The results show that CLCP films have great potential in microvalve applications in biological engineering, drug delivering, etc. It has advantages of wireless, remote control and green energy.  相似文献   

20.
We have studied the thermosensitive property of methylcellulose (MC) thin films supported on Si substrate by static sessile drop contact angle measurements, and their surface properties and thin film structure by x-ray reflectivity (XRR) and atomic force microscopy (AFM) techniques. From the static sessile drop contact angle measurements, the MC thin films showed the characteristic hydrophilic-to-hydrophobic transition at ~70?°C, which is the lower critical solution temperature of the bulk solution volume phase separation transition. For films with thickness d ≤ R(g), the onset of such a transition is affected by the film thickness while very thick films, d ? R(g), yielded higher contact angles. Annealing the MC thin films with thicknesses ~200 ? (near the radius of gyration, R(g), of the polymer) below the bulk glass transition temperature (T(g) ~ 195?° C) would not change the hydrophobic switch nature of the film but annealing 'at' and above the bulk T(g) would change its surface property. From surface topography images by AFM, there were no significant changes in either the roughness or the film texture before and after annealing. With XRR data, we were able to determine that such changes in the surface properties are highly correlated to the film thickness changes after the annealing process. This study, we believe, is the first to examine the thermal annealing affects on the thermal response function of a thermoresponsive polymer and is important for researching how to tailor the hydrophobic switching property of MC thin films for future sensing applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号