首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coupled heat transfer between laminar forced convection along and conduction inside a flat plate wall is theoretically studied. The laminar convective boundary layer is analyzed by employing the integral technique. The energy equations for the fluid and the plate wall are combined under the condition of the continuity in the temperature and heat flux at the fluid-solid interface. The analysis results in a simple formal solution. Expressions have been obtained for calculating local Nusselt number, wall heat flux and temperature along the plate, all are functions of the local Brun number, Br x , which is a measure of the ratio of the thermal resistance of the plate to that of the convective boundary layer. The results indicate that for Br x ≥0.15, neglecting the plate resistance will results in an error of more than 5% in Nusselt number. Comparison of the present solution with other previous studies has been made. The solution may be of a considerable theoretical and practical interest. Received on 19 August 1998  相似文献   

2.
3.
4.
The steady laminar boundary layer flow, with an external force, along a vertical isothermal plate is studied in this paper. The external force may be produced either by the motion of the plate or by a free stream. The fluid is water whose density-temperature relationship is non-linear at low temperatures and viscosity and thermal conductivity are functions of temperature. The results are obtained with the numerical solution of the boundary layer equations with , k and variable across the boundary layer. Both upward and downward flow is considered. It was found that the variation of , k and with temperature has a strong influence on mixed convection characteristics.Nomenclature cp water specific heat - f dimensionless stream function - g gravitational acceleration - Grx local Grashof number - k thermal conductivity - Nux local Nusselt number - Pr Prandtl number - Pra ambient Prandtl number - Rex local Reynolds number - s salinity - T water temperature - Ta ambient water temperature - To plate temperature - u vertical velocity - ua free stream velocity - uo plate velocity - v horizontal velocity - x vertical coordinate - y horizontal coordinate - pseudo-similarity variable - nondimensional temperature - dynamic viscosity - f film dynamic viscosity - o dynamic viscosity at plate surface - kinematic viscosity - buoyancy parameter - water density - a ambient water density - f film water density - o water density at plate surface - physical stream function  相似文献   

5.
In all studies concerning laminar mixed convection along a vertical isothermal moving cylinder a linear relationship between fluid density and temperature has been used and viscosity and thermal conductivity have been considered constant. However, it is known that the density-temperature relationship for water is non-linear at low temperatures and viscosity and thermal conductivity are functions of temperature. In this study the problem of water laminar mixed convection along a vertical isothermal moving cylinder has been investigated in the temperarure range between 20 °C and 0 °C taking into account the temperature dependence of μ, k and ρ. The results are obtained with the numerical solution of the boundary layer equations. The variation of μ, k and ρ with temperature has a strong influence on mixed convection characteristics.  相似文献   

6.
The analytical solution of laminar free convective heat transfer in an unlimited space from an isothermal horizontal ring with an adiabatic plug is presented. The results of theoretical considerations are presented as relation of the Nusselt and Rayleigh numbers: $$Nu_D = 1.151 \cdot (Ra_D )^{1/5} \cdot \Phi (\phi _0 )$$ \] where Φ(φ0) is a function of shape coefficient of the ring (φ0=d/D). The solution presented has been verified experimentally with rings of constant external diameter (D=0.06 [m]) and various internal diameters (d=0, 0.01, 0.02, 0.04 and 0.05 [m]). The fluid tested was glycerin. The theoretical predictions agree well with the experimental results.  相似文献   

7.
Calculation of free convection from bodies of arbitrary shape has been investigated previously. The Body Gravity Function (BGF) which accounts for the geometry of each body shape was considered to be a constant value. In the present study, it is shown that BGF is not a constant value in a wide range of Rayleigh number. Instead, its value changes as Rayleigh number increases. Therefore, by analytical modeling of Dynamic BGF and derivation of a new parameter called Body Fluid Function, a novel method is proposed to calculate laminar free convection heat transfer from isothermal convex bodies of arbitrary shape. Results for 24 different body shapes are compared with the available experimental and numerical data. Excellent agreement shows that the present simple method accurately predicts laminar free convection heat transfer from isothermal convex bodies of arbitrary shape in the whole range of laminar flow and for fluids of any Prandtl number.  相似文献   

8.
This paper presents a new formulation for the laminar free convection from an arbitrarily inclined isothermal plate to fluids of any Prandtl number between 0.001 and infinity. A novel inclination parameter is proposed such that all cases of the horizontal, inclined and vertical plates can be described by a single set of transformed equations. Moreover, the self-similar equations for the limiting cases of the horizontal and vertical plates are recovered from the transformed equations by setting=0 and=1, respectively. Heated upward-facing plates with positive and negative inclination angles are investigated. A very accurate correlation equation of the local Nusselt number is developed for arbitrary inclination angle and for 0.001 Pr .
Wärmeübertragung bei freier Konvektion an einer isothermen Platte mit beliebiger Neigung
Zusammenfasssung Diese Untersuchung stellt eine neue Formulierung der laminaren freien Konvektion von Flüssigkeiten mit einer Prandtl-Zahl zwischen 0,001 und unendlich an einer beliebig schräggestellten isothermen Platte dar. Ein neuer Neigungsparameter wird eingeführt, so daß alle Fälle der horizontalen, geneigten oder vertikalen Platte von einem einzigen Satz transformierter Gleichungen beschrieben werden können. Die unabhängigen Gleichungen für die beiden Fälle der horizontalen and vertikalen Platte wurden für=0 und=1 aus den transformierten Gleichungen wieder abgeleitet. Es wurden erwärmte aufwärtsgerichtete Platten mit positiven und negativen Neigungswinkeln untersucht. Eine sehr genaue Gleichung wurde für die lokale Nusselt-Zahl bei beliebigen Neigungswinkeln und für 0,001 Pr entwickelt.

Nomenclature C p specific heat - f reduced stream function - g gravitational acceleration - Gr local Grashof number,g(T w T w ) x3/v2 - h local heat transfer coefficient - k thermal conductivity - n constant exponent - Nu local Nusselt number,hx/k - p pressure - Pr Prandtl number, v/ - Ra local Rayleigh number,g(T w T )J x3/v - T fluid temperature - T w wall temperature - T temperature of ambient fluid - u velocity component in x-direction - v velocity component in y-direction - x coordinate parallel to the plate - y coordinate normal to the plate Greek symbols thermal diffusivity - thermal expansion coefficient - (Ra¦sin¦)1/4/( Ra cos()1/5 - pseudo-similarity variable, (y/) - dimensionless temperature, (TT )/(T wT ) - ( Ra cos)1/5+(Rasin)1/4 - v kinematic viscosity - 1/[1 +(Ra cos)1/5/( Ra¦sin)1/4] - density of fluid - Pr/(1+Pr) - w wall shear stress - angle of plate inclination measured from the horizontal - stream function - dimensionless dynamic pressure  相似文献   

9.
10.
11.
This paper presents the unsteady laminar forced convection heat transfer from a row of five isothermal square cylinders placed in a side-by-side arrangement at a Reynolds number of 150. The numerical simulations are performed using a finite volume code based on the PISO algorithm in a collocated grid system. Special attention is paid to investigate the effect of the spacing between the cylinders on the overall transport processes for the separation ratios (spacing to size ratio) between 0.2 and 10. No significant interaction between the wakes is observed for spacing greater than four times the diameter at this Reynolds number. However, at smaller spacing, the wakes interact in a complicated manner resulting different thermo-hydrodynamic regimes. The vortex structures and isotherm patterns obtained are systematically presented and discussed for different separation ratios. In addition, the mean and instantaneous drag and lift coefficients, mean and local Nusselt number and Strouhal number are determined and discussed for various separation ratios. A new correlation is derived for mean Nusselt number as a function of separation ratio for such flows.  相似文献   

12.
A numerical analysis is made of incompressible transient turbulent flow heat transfer between two parallel plates when there is a step jump in space along the channel in wall heat flux or wall temperature. The variation of the fluid velocity and effective diffusivity over the channel cross section are accounted for. The fluid is assumed to have a fully-developed turbulent velocity profile throughout the length of the channel. The thermal responses of the system are obtained by solving energy equation for air by a digital computer. The results are presented in graphical forms. The stability of the finite difference solution is studied and condition for the stability of the difference solution is derived. A method is given to obtain velocity distributions from the distribution of turbulent eddy diffusivity of momentum. Variations of Nusselt numbers are obtained as a function of time and space. Steady-state values are also given and compared with the published results.  相似文献   

13.
Laminar free convection heat transfer from two vertical arrays of five isothermal cylinders separated by flow diverters is studied experimentally using a Mach-Zehnder interferometer. The width of flow diverters is kept constant to two-cylinder diameters and the cylinders vertical center-to-center spacing is equal to three-cylinder diameter. Effect of the ratio of the horizontal spacing between two cylinder arrays to their diameter (Sh/D) on heat transfer from the cylinders is investigated for various Rayleigh numbers. The experiments are performed for Sh/D = 2-4, and the Rayleigh number based on the cylinder diameter ranging from 103 to 3 × 103. It is observed that for small Sh/D ratios, the flow diverters have a negative effect on the total rate of heat transfer from the arrays; while by increasing the horizontal center to center spacing, they tend to enhance the overall cooling rate of the array. Moreover, increasing Ra and Sh/D generally results in a higher average Nusselt number for each cylinder in the array.  相似文献   

14.
Summary Approximate solutions for laminar natural convection heat transfer between a vertical plate and a power-law fluid with high Prandtl number were obtained using an integral method for cases with various types of boundary conditions. The results were found in good agreement with available experimental evidence.Nomenclature a exponent defined by equations (28) and (29) - A, B, C, D, E constants defined by equations (15) to (19) - C 1, C 2, M 1, M 2 coefficients for Nusselt number expression defined by (32b), (33b) - f temperature difference, equal to T sT - f + dimensionless temperature difference - g gravitational acceleration - Gr Grashof number defined by (25), (50) and (66), respectively - H heat flux at plate surface - h x local heat transfer coefficient - K consistency index for Power-law fluid - k thermal conductivity of fluid - K 1, K 2 constants defined by (50) and (51) - L height of plate - n flow behavior index for Power-law fluid - P a quantity defined by (54a) - T temperature - T s plate temperature - T temperature of the bulk of fluid - s constant given by (35) - u velocity component along x-direction - u x maximum velocity induced by natural convection current, (10) - v velocity component along y-direction - x distance measured along direction parallel to that of gravitational force - x + dimensionless quantity, defined as x/L - y distance measured away from plate - Nu x local Nusselt number - Nu av average Nusselt number - Pr Prandtl number defined by (24) - T temperature difference according to boundary conditions - thermal diffusivity of fluid - coefficient of thermal expression of fluid - boundary layer thickness - + dimensionless boundary layer thickness - dimensionless velocity profile - dimensionless variable, defined as y/ - dimensionless temperature difference  相似文献   

15.
Stationary and laminar forced convection in a circular tube with a sinusoidal axial distribution of wall heat flux is studied under the hypothesis that both axial heat conduction and viscous dissipation in the fluid are negligible. Two cases are considered: a sinusoidal wall heat flux distribution with a vanishing mean value; a sinusoidal wall heat flux distribution which does not change its sign. In both cases, the temperature field and the local Nusselt number are evaluated analytically in the fully developed region, i.e. where the local Nusselt number depends periodically on the axial coordinate. It is shown that, in the first case, the fully developed region presents an infinite sequence of axial positions where the local Nusselt number is singular. In these positions, the wall heat flux has a non-vanishing value even if the wall temperature equals the bulk temperature.  相似文献   

16.
The characteristics of unsteady entrance heat transfer in the combined entrance heat transfer region of laminar pipe flows resulting from time-varying inlet temperature are numerically investigated. Three non-dimensional parameters,Nu 0, a*, andf are identified in the study. Also, their effects on the non-dimensional duct wall temperature, fluid bulk temperature, and duct wall heat flux are discussed in great detail. Comparisons are made with the zero thermal capacity wall solution.  相似文献   

17.
A critical survey was conducted of the most relevant correlations of boiling heat transfer for water in forced convection flow. Most of the investigations carried out on partial nucleate boiling and fully developed nucleate boiling have led to the formulation of correlations which cannot cover a wide range of operating conditions, due to the empirical approach considered. A comparative analysis is therefore required in order to define the accuracy of the proposed correlations, on the basis of the experimental data presently available. The survey allows the accuracy of the different calculating procedures to be evaluated. The results obtained also indicate the most reliable heat transfer correlations for the different operating conditions investigated. This survey was developed considering five pressure ranges (up to 180 bar) for both saturation and subcooled boiling conditions.  相似文献   

18.
The results of an experimental investigation of the heat transfer coefficients for forced convection from a NACA-63421 airfoil are presented. Wind tunnel measurements of convection coefficients are obtained for air flow temperatures from −30 to 20 °C. The experimental data is correlated with respect to the Nusselt and Reynolds numbers. Conduction within the airfoil balances heat transfer by convection from the airfoil surface in steady-state conditions. Both average and spatial variations of the heat transfer coefficients are non-dimensionalized through modifications of a classical Hilpert correlation for cylinders in crossflow. It is shown that the functional form of the Hilpert correlation can effectively accommodate measured data for the NACA airfoil over a range of Reynolds numbers. An uncertainty analysis is performed to yield a 7.34% measurement uncertainty for experimental data correlated with the Nusselt number.  相似文献   

19.
Numerical methods are used to investigate the transient, forced convection heat/mass transfer from a finite flat plate to a steady stream of viscous, incompressible fluid. The temperature/concentration inside the plate is considered uniform. The heat/mass balance equations were solved in elliptic cylindrical coordinates by a finite difference implicit ADI method. These solutions span the parameter ranges 10 Re 400 and 0.1 Pr 10. The computations were focused on the influence of the product (aspect ratio) × (volume heat capacity ratio/Henry number) on the heat/mass transfer rate. The occurrence on the plates surface of heat/mass wake phenomena was also studied.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号