首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
A multiple-injection capillary zone electrophoresis (MICZE) method has been developed for the assay of salbutamol in Ventoline Depot tablets (GlaxoSmithKline). In the developed method, seven sample sets, each consisting of three samples, were sequentially injected into the capillary and analyzed within a single run. This enabled a total of twenty-one sequential injections, i.e., six standards and fifteen samples, containing salbutamol and the injection marker oxprenolol. The injected sample plugs were separated by plugs of background electrolyte, through application of a short-term voltage (30kV) over the capillary for different time periods, i.e., t(PE1) and t(PE2). The samples in each set were isolated from each other by partial electrophoresis for 2.35min (t(PE1)), while the sample sets were separated for 10.50min (t(PE2)). After the final injection, all the applied samples were subjected to electrophoresis for a time period corresponding to that in conventional single-injection CZE. The method was validated regarding linearity, accuracy, precision and robustness before it was applied to the determination of salbutamol in 15 tablets of Ventoline Depot with a labeled content of 8mg salbutamol. The average salbutamol content was determined to 7.8mg (+/-0.3mg) from simultaneous analyses of the 15 different tablets.  相似文献   

2.
Electrokinetic-based injection modes for separative microsystems   总被引:3,自引:0,他引:3  
Miniaturization of analytical instruments has attracted a wide interest in Analytical Chemistry over the past decade because of the advantages such as reduced reagent consumption and shorter analysis time. For chips involving separation, injection is a key step to achieve efficient and sensitive analysis. Electrokinetic injection mode is mostly used in chips because it is easier to generate flow motion in microsystems via electric potential control at channel extremities than pressure-driven flow. The injection step usually involves several intersecting channels. For each injection design, different injection modes can be done, depending on electric field sequences and distributions. This paper is an up-to-date review of these different modes on a chip.  相似文献   

3.
The dependence of the programmed-temperature solvent split sampling technique using a PSS (programmed-split/splitless) injection mode on different variables affecting the introduction of large sample volumes for a mixture of alkanes in capillary GC was evaluated. Apart from the studies found in the literature on different factors such as speed of injection. presence of adsorbent in the liner, internal diameter of the liner, initial and final injector temperature, split flow-rate and initial split time, affecting the chromatographic signal of different compounds, others were studied whose influence has not been considered until now. They include length of the microsyringe needle, adsorbent distribution in the liner, injection volume on analyte discrimination, speed of injector heating, time which the column stays at the initial temperature and time that the injector stays at the final temperature. Once finalised, the study of the PSS injection mode was compared with the conventional mode of gas chromatography splitless injection, and found that the proposed method increases sensitivity in GC trace analysis. Finally, the application of both injection modes in the determination of aliphatic hydrocarbons was tested in an atmospheric particulate sample.  相似文献   

4.
Blas M  Delaunay N  Rocca JL 《Electrophoresis》2007,28(24):4629-4637
Miniaturization of analytical instruments has attracted a wide interest in analytical chemistry over the past decade because of the advantages of reduced reagent consumption, better analytical performance, and shorter analysis time. The widespread interest in this field has resulted in efforts to develop chips. For chips involving separation, injection is a key step to achieve efficient and sensitive analysis. This work presents a comparative study of two electrokinetic injection modes in chips: the floating, which has been mainly used up to now, and the dynamic. This study was done with a crossjunction, either with numerical simulations or with experiments. Experiments were carried out with homemade PDMS-glass microsystems involving zonal electrophoresis analysis of five derivatized amino acids. Injected amount, reproducibility, separation efficiency, and analyte discrimination were evaluated and discussed. The experimental results were successfully correlated with numerical simulations. It appeared that the dynamic injection mode is much more appropriate than the floating mode as it is faster (reduction by a factor 2 of the total analysis time here), more reproducible (RSD of peak areas equal to 1.3% (n = 4) instead of 10% (n = 4)), and leads to more efficient separation (about 20% with 3 cm separation channel length) for the same injected amount, whatever the amount, because the sample plug is less dispersed.  相似文献   

5.
An experimental injection port has been designed for split or splitless sample introduction in capillary gas chromatography; the inlet uses electronic pressure control, in order that the column head pressure may be set from the GC keyboard, and the inlet may be used in the constant flow or constant pressure modes. Alternatively, the column head pressure may be programmed up or down during a GC run in a manner analogous to even temperature programming. Using electronic pressure control, a method was developed which used high column head pressures (high column flow rates) at the time of injection, followed by rapid reduction of the pressure to that required for optimum GC separation. In this way, high flow rates could be used at the time of splitless injection to reduce sample discrimination, while lower flow rates could be used for the separation. Using this method, up to 5 μl of a test sample could be injected in the splitless mode with no discrimination; in another experiment, 2.3 times as much sample was introduced into the column by using electronic pressure programming. Some GC peak broadening was observed in the first experiment.  相似文献   

6.
Enantiomers of clenbuterol, salbutamol and tulobuterol were directly separated and quantitated from a spiked sample by capillary electrophoresis (CE) using sulfaited beta-cyclodextrin (SCD) as chiral selector and phosphate as running buffer. The SCD and buffer concentration, pH and field strength were the parameters studied to optimize the separation. Optimal separation was obtained using 50 mM of phosphate monobasic at pH = 2.24, 0.25% (w/w) of sulfated cyclodextrin and a field strength of 10 kV, with 20 min total time analysis. Comparison between two different injection modes (hydrodynamic and electrokinetic) was made. In the hydrodynamic mode, repeatability (expressed as relative standard deviation, RSD) was less than 1.2% for migration times for all the analyte peaks and less than 2% for peak area percentages. With respect to reproducibility, RSD was less than 3.8% for migration time and less than 3% for peak area percentages. Calibration curves were set up for two different sample concentration ranges (1 to 10 microg mL(-1) and 160-800 ng mL(-1), of each of the racemates studied). Although the electrokinetic injection mode for an aqueous sample appeared to suffer from some enantiodiscrimination, calibration curves were linear in the range between 1 and 10 ng mL(-1) with regression coefficients ranging from 0.9996 to 0.9952. As in the case of hydrodynamic injection, the method was tested with a spiked sample.  相似文献   

7.
With use of a time-dependent perturbation theory, vibrational energy relaxation (VER) of isotopically labeled amide I modes in cytochrome c solvated with water is investigated. Contributions to the VER are decomposed into two contributions from the protein and water. The VER pathways are visualized by using radial and angular excitation functions for resonant normal modes. Key differences of VER among different amide I modes are demonstrated, leading to a detailed picture of the spatial anisotropy of the VER. The results support the experimental observation that amide I modes in proteins relax with subpicosecond time scales, while the relaxation mechanism turns out to be sensitive to the environment of the amide I mode.  相似文献   

8.
Car-Parrinello molecular dynamics (CPMD) and a previously developed wave packet model are used to study ultrafast relaxation in water clusters. Water clusters of 15 water molecules are used to represent ice Ih. The relaxation is studied by exciting a symmetric or an asymmetric stretch mode of the central water molecule. The CPMD results suggest that relaxation occurs within 100 fs. This is in agreement with experimental work by Woutersen and Bakker and the earlier wave packet calculations. The CPMD results further indicate that the excitation energy is transferred both intramolecularly and intermolecularly on roughly the same time scale. The intramolecular energy transfer occurs predominantly between the symmetric and asymmetric modes while the bend mode is largely left unexcited on the short time scale studied here.  相似文献   

9.
《Liquid crystals》1997,23(5):723-739
The dynamics of different molecular modes in four antiferroelectric liquid crystal substances have been studied by a combination of spectroscopic methods.The fastest motion is the reorientation around the molecular long axis, here found in the low GHz range by time domain spectroscopy. The reorientation around the short axis has a characteristic frequency of about 10kHz and is detected by frequency domain spectroscopy in the homeotropic configuration. As for the collective excitations, the Goldstone and soft modes, characteristic of the ferroelectric phase, have counterparts in the antiferroelectric phase which appear very different. There are two characteristic peaks in the spectrum, one at high frequency, about 100kHz, the other at low frequency, about 10 kHz. The latter has often been mistaken for short axis reorientation and both have been attributed to soft modes. By combining different experimental techniques and different geometries it can be shown that neither is a soft mode, but both are collective modes of different character: the high frequency mode corresponds to fluctuations where molecules in neighbouring layers are moving in opposite phase, the low frequency mode to phase fluctuations in the helicoidal superstructure. In materials exhibiting a C* phase in addition to the C*a or C* gamma phases, an additional strong peak appears in at least one lower-lying phase adjacent to the C* phase. We show that this peak, which we call a hereditary peak, has nothing to do with the antiferroelectric or ferrielectric order, but is just the Goldstone peak from a coexisting C* phase. In the same way, a Goldstone mode peak from the C* gamma phase may appear in the underlying C* a phase. In a general way, narrow phases like C* gamma, being bounded by first order transitions on both sides (C* a -C* gamma -C*) are likely to show non-characteristic (hereditary) peaks from both adjacent phases.  相似文献   

10.
Enantiomers of clenbuterol, salbutamol and tulobuterol were directly separated and quantitated from a spiked sample by capillary electrophoresis (CE) using sulfated β-cyclodextrin (SCD) as chiral selector and phosphate as running buffer. The SCD and buffer concentration, pH and field strength were the parameters studied to optimize the separation. Optimal separation was obtained using 50 mM of phosphate monobasic at pH = 2.24, 0.25% (w/w) of sulfated cyclodextrin and a field strength of 10 kV, with 20 min total time analysis. Comparison between two different injection modes (hydrodynamic and electrokinetic) was made. In the hydrodynamic mode, repeatability (expressed as relative standard deviation, RSD) was less than 1.2% for migration times for all the analyte peaks and less than 2% for peak area percentages. With respect to reproducibility, RSD was less than 3.8% for migration time and less than 3% for peak area percentages. Calibration curves were set up for two different sample concentration ranges (1 to 10 μg mL–1 and 160– 800 ng mL–1, of each of the racemates studied). Although the electrokinetic injection mode for an aqueous sample appeared to suffer from some enantiodiscrimination, calibration curves were linear in the range between 1 and 10 ng mL–1 with regression coefficients ranging from 0.9996 to 0.9952. As in the case of hydrodynamic injection, the method was tested with a spiked sample.  相似文献   

11.
The properties of semidilute solutions of a mixture of polyacrylamide and thermoresponsive polyvinylcaprolactam are studied via dynamic light scattering. It is found that the relaxation time (correlation length) distribution contains several modes. The obtained experimental data are interpreted in terms of the theory describing the dynamics of semidilute and concentrated solutions with allowance for viscoelastic interactions. The investigation of mode dispersion (the dependence of relaxation time on the wave vector of scattering) shows that the fastest and slowest modes are of the diffusion type. The fast mode is the mode of collective diffusion; it may be attributed to the fluctuation motion of polymer units inside blobs. The slowest mode corresponds to the diffusion motion of macromolecule clusters. The rate of relaxation of medium modes nonlinearly depends on the squared wave vector, and these modes are apparently viscoelastic.  相似文献   

12.
Dynamical synchronous modes in a network of four nearly identical chemical oscillators unidirectionally coupled via inhibitory pulse coupling with time delay τ (when a spike in one oscillator inhibits the next oscillator in the circle after time delay τ), are obtained experimentally. The Belousov–Zhabotinsky reaction is used as a chemical oscillator. The existence of four main modes is confirmed experimentally: in-phase (IP) oscillations; an anti-phase (AP) mode, in which any two neighboring oscillators have a phase shift equal to half of global period T; a walk mode (W), in which oscillators produce consecutive spikes in the direction of the connection with a phase shift between neighboring oscillators equal to T/4; and a walk-reverse mode (WR), when the oscillators produce consecutive spikes (with phase shift T/4), but in the direction opposite the connections (the mode opposite to the W mode). In addition to the main modes, OS modes in which at least one of the four oscillators is suppressed, and “2+1+1” modes in which two neighboring oscillators produce spikes simultaneously and the phases of the third and the fourth oscillators are shifted by T/3 and 2T/3, respectively, are found. It is shown that the modes found experimentally correspond to those found in simulations.  相似文献   

13.
The role of anharmonic effects in the vibrational spectroscopy of the dark state and two major chromophore intermediates of the photoactive yellow protein (PYP) photocycle is examined via ab initio vibrational self-consistent field (VSCF) calculations and time-resolved resonance Raman spectroscopy. For the first time, anharmonicity is considered explicitly in calculating the vibrational spectra of an ensemble consisting of the PYP chromophore surrounded by model compounds used as mimics of the important active-site residues. Predictions of vibrational frequencies on an ab initio corrected semiempirical potential energy surface show remarkable agreement with experimental frequencies for all three states, thus shedding light on the potential along the reaction path. For example, calculated frequencies for vibrational modes of the red-shifted intermediate, PYPL, exhibit an overall average error of 0.82% from experiment. Upon analysis of anharmonicity patterns in the PYP modes we observe a decrease in anharmonicity in the C8-C9 stretching mode nu29 (trans-cis isomerization marker mode) with the onset of the cis configuration in PYPL. This can be attributed to the loss of the hydrogen-bonding character of the adjacent C9-O2 to the methylamine (Cys69 backbone). For several of the modes, the anharmonicity is mostly due to mode-mode coupling, while for others it is mostly intrinsic. This study shows the importance of the inclusion of anharmonicity in theoretical spectroscopic calculations, and the sensitivity of experiments to anharmonicity. The characterization of protein active-site residues by small molecular mimics provides an acceptable chemical structural representation for biomolecular spectroscopy calculations.  相似文献   

14.
We present a Density Functional Theory investigation aimed to model the possible adsorption modes to the TiO(2) surface of two representative TPA-based dyes, termed L0 and rh-L0, having the two mostly employed anchoring groups, namely the cyanoacrylic and rhodanine-3-acetic acids respectively. The bidentate coordination with proton transfer to a nearby surface oxygen is found to be the energetically favored anchoring mode for both dyes. The calculations show that the different dye anchoring groups give rise to a very different electronic coupling between the dye and the manifold of unoccupied semiconductor states, thus implying different electron injection mechanisms. The strongly coupled L0 dye possibly shows an adiabatic electron injection mechanism, while a non-adiabatic electron injection can be foreseen for the weakly coupled rh-L0 dye. The different orientation with respect to the TiO(2) surface for the two classes of dyes, implying different distances of the donor group from the oxide surface, together with the different electron injection mechanisms might account for the faster recombination reaction measured for the rhodanine-based dyes.  相似文献   

15.
16.
分析并计算了纳米结构表面上冷凝液滴按照不同途径长大的过程中液滴能量的增加速率, 并以能量增加最小为判据来确定液滴的生长途径. 结果表明, 纳米结构内形成的冷凝液斑在初期按接触角(CA)增加的模式生长时, 其能量增加速率远低于其它模式, 于是, 初始液斑先按增大接触角、并保持底面积不变的模式生长, 直至液滴达到前进角状态. 此后, 沿接触角增加的模式长大所导致的能量增加速率开始远高于其它生长模式, 于是液滴三相线开始移动, 底面积开始增加, 但接触角保持不变. 液滴所增加的底面积可以呈润湿或复合两种状态, 分别形成Wenzel 液滴及部分润湿液滴, 前者的表观接触角一般小于160°, 而后者则明显大于160°. 液滴的生长模式及其润湿状态均与纳米结构参数密切相关, 仅当纳米柱具有一定高度、且间距较小时, 冷凝液滴才能呈现部分润湿状态. 最后, 本模型对纳米结构表面上冷凝液滴润湿状态的计算结果与绝大部分实测结果相一致, 准确率达到91.9%, 明显高于已有公式的计算准确率.  相似文献   

17.
Enzymatic methods for the determination of ethanol in whole blood are proposed. They use different types of detection and flow injection analysis (FIA) modes: fluorometric detection (use of normal FIA and stopped-flow/FIA); amperometric detection by monitoring of NADH (use of normal amperometric and pulse mode) and with the aid of a coupled enzymatic reaction (2,6-dichlorophenolindophenol/diaphorase). Determination ranges between 0.1 and 30.0 μg/ml are obtained (which in all cases comprise the legal range of ethanol in blood), with good precision and sampling frequency. The sensitivity of the methods can be manipulated by changing the injected sample volume or the pH.  相似文献   

18.
A split/splitless capillary injection port has been developed for electronic pressure programming (EPP) in gas chromatography. The inlet may be operated in several modes: constant pressure, constant flow, vacuum compensation (for gas chromatography–mass spectrometry (GC-MS)), pressure-programmed, or a combination mode enabling a pressure program to be followed by constant flow. A pressure-programming technique has been tried which uses high pressure (high column flow rate) at the time of injection followed by reduction in inlet pressure to a value required for normal chromatography. Sample is swept rapidly from the inlet and into the column, reducing contact with the hot, active inlet surfaces which cause sample decomposition. The decomposition of endrin and 4,4′-DDT, two labile pesticides, can be substantially reduced using this technique and modest improvements were also observed with the carbamate pesticide carbaryl.  相似文献   

19.
We recently introduced a mixed-mode reversed-phase/weak anion-exchange type separation material based on silica particles which consisted of a hydrophobic alkyl strand with polar embedded groups (thioether and amide functionalities) and a terminal weak anion-exchange-type quinuclidine moiety. This stationary phase was designed to separate molecules by lipophilicity and charge differences and was mainly devised for peptide separations with hydroorganic reversed-phase type elution conditions. Herein, we demonstrate the extraordinary flexibility of this RP/WAX phase, in particular for peptide separations, by illustrating its applicability in various chromatographic modes. The column packed with this material can, depending on the solute character and employed elution conditions, exploit attractive or repulsive electrostatic interactions, and/or hydrophobic or hydrophilic interactions as retention and selectivity increments. As a consequence, the column can be operated in a reversed-phase mode (neutral compounds), anion-exchange mode (acidic compounds), ion-exclusion chromatography mode (cationic solutes), hydrophilic interaction chromatography mode (polar compounds), and hydrophobic interaction chromatography mode (e.g., hydrophobic peptides). Mixed-modes of these chromatographic retention principles may be materialized as well. This allows an exceptionally flexible adjustment of retention and selectivity by tuning experimental conditions. The distinct separation mechanisms will be outlined by selected examples of peptide separations in the different modes.  相似文献   

20.
Lodén H  Amini A 《Electrophoresis》2007,28(10):1548-1556
An efficient and rapid separation method based on reversed-polarity multiple-injection CZE (MICZE), has been developed for the quantification of buserelin in a pharmaceutical product. The determinations were performed by serially injecting five standard solutions of buserelin (50-300 microg/mL) and one reference analyte into a Polybrene-coated capillary. All the samples contained goserelin, an analog peptide to buserelin, as internal standard (IS). Immediately after pressure injection, the applied sample plugs were subjected to electrophoresis for 2 min at -25 kV. Consequently, each sample plug became isolated from its neighboring plugs by the BGE, composed of 100 mM phosphate-triethanolamine buffer at pH 3.0 containing 10% v/v ACN. During separation the individual sample components migrated at similar velocities and as distinct zones through the capillary giving 24 peaks, 12 from the analyte and the IS and 12 from the sample matrix. The buserelin content of the pharmaceutical product was determined to be 0.94 +/- 0.05 mg/mL, which is only a slight deviation from the declared concentration (1 mg/mL).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号