首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we describe the design and fabrication of a dielectrophoresis (DEP)-based cell-positioning and cell-culture device for the construction of cell networks. This device enables both individual cell positioning and cell culture. Titanium electrodes were fabricated by deposition. Furthermore, microchambers and microchannels composed of SU-8, which is a negative photoresist, were used to carry out cell culture and enable cell differentiation. Using our device, N1E-115 cells were individually positioned in the microchambers, and the positioning yield was 45%. After positioning, the cells could be continuously cultured in the microchambers. Furthermore, the cells differentiated, and their neurites extended through the microchannels after cultivation for several days. These results indicate that our device greatly increases the prospects for individual cell positioning and can be used to construct cell networks that have several applications in the medical field, for example, in drug screening.  相似文献   

2.
A method is described for continuous observation of isolated single cells that enables genetically identical cells to be compared; it uses an on-chip microculture system and optical tweezers. Photolithography is used to construct microchambers with 5-microm-high walls made of thick photoresist (SU-8) on the surface of a glass slide. These microchambers are connected by a channel through which cells are transported, by means of optical tweezers, from a cultivation microchamber to an analysis microchamber, or from the analysis microchamber to a waste microchamber. The microchambers are covered with a semi-permeable membrane to separate them from nutrient medium circulating through a "cover chamber" above. Differential analysis of isolated direct descendants of single cells showed that this system could be used to compare genetically identical cells under contamination-free conditions. It should thus help in the clarification of heterogeneous phenomena, for example unequal cell division and cell differentiation.  相似文献   

3.
Increasing evidence shows that activated mesenchymal migration is a key process of the metastatic cascade. Cancer cells usually gain such migratory capability through an epithelial‐to‐mesenchymal transition. Herein we present a high‐throughput microfluidic device with 3120 microchambers to specifically monitor mesenchymal migration. Through imaging of the whole chip and statistical analysis, we can evaluate the two key factors of velocity and percentage related to cell migratory capacity at different cell densities in culture. We also used the device to screen antimetastatic drugs for their inhibition of mesenchymal migration and prevention of metastatic malignancy. This device will provide an excellent platform for biologists to gain a better understanding of cancer metastasis.  相似文献   

4.
We present a high aspect ratio microfluidic device for culturing cells inside an array of microchambers with continuous perfusion of medium. The device was designed to provide a potential tool for cost-effective and automated cell culture. The single unit of the array consists of a circular microfluidic chamber 40 microm in height surrounded by multiple narrow perfusion channels 2 microm in height. The high aspect ratio (approximately 20) between the microchamber and the perfusion channels offers advantages such as localization of the cells inside the microchamber as well as creating a uniform microenvironment for cell growth. Finite element methods were used to simulate flow profile and mass transfer of the device. Human carcinoma (HeLa) cells were cultured inside the device with continuous perfusion of medium at 37 degrees C and was grown to confluency. The microfluidic cell culture array could potentially offer an affordable platform for a wide range of applications in high throughput cell-based screening, bioinformatics, synthetic biology, quantitative cell biology, and systems biology.  相似文献   

5.
Kim J  Hegde M  Kim SH  Wood TK  Jayaraman A 《Lab on a chip》2012,12(6):1157-1163
Bacteria are almost always found in ecological niches as matrix-encased, surface-associated, multi-species communities known as biofilms. It is well established that soluble chemical signals produced by the bacteria influence the organization and structure of the biofilm; therefore, there is significant interest in understanding how different chemical signals are coordinately utilized for community development. Conventional methods for investigating biofilm formation such as macro-scale flow cells are low-throughput, require large volumes, and do not allow spatial and temporal control of biofilm community formation. Here, we describe the development of a PDMS-based two-layer microfluidic flow cell (μFC) device for investigating bacterial biofilm formation and organization in response to different concentrations of soluble signals. The μFC device contains eight separate microchambers for cultivating biofilms exposed to eight different concentrations of signals through a single diffusive mixing-based concentration gradient generator. The presence of pneumatic valves and a separate cell seeding port that is independent from gradient-mixing channels offers complete isolation of the biofilm microchamber from the gradient mixer, and also performs well under continuous, batch or semi-batch conditions. We demonstrate the utility of the μFC by studying the effect of different concentrations of indole-like biofilm signals (7-hydroxyindole and isatin), either individually or in combination, on biofilm development of pathogenic E. coli. This model can be used for developing a fundamental understanding of events leading to bacterial attachment to surfaces that are important in infections and chemicals that influence the biofilm formation or inhibition.  相似文献   

6.
For immediate discrimination among isolated cells we propose a novel device and technique for isolation of cells and sequential detection of specific gene(s) within them by polymerase chain reaction (PCR). In this study, we isolated Salmonella enterica cells and detected the Salmonella-specific invA gene from isolated cells by PCR on a compact disk (CD)-shaped device. This device enabled liquid flow by centrifugal force without a micro pump, and was fabricated from silicon wafer and glass to avoid evaporation of a small amount of reagent. One device has 24 microchannels, and 313 microchambers integrated on each microchannel. One microliter of PCR mixture containing cells was separated into microchambers on the device at 5000 rpm for 30 s. Each microchamber contained approximately 1.5 nL PCR mixture. A Poisson distribution of S. enterica cells was observed for different densities of cell suspension. At 200 cells μL?1 of S. enterica or less, isolated single cells could be determined on the device by amplification of DNA of the invA gene; at 400 cells μL?1, chambers containing no, one, two, or three cells could be determined on the device. Selective detection of S. enterica was achieved by PCR from a mixture of S. enterica and Esherichia coli on the CD-shaped device.  相似文献   

7.
A new type of cell-cultivation system based on photo-thermal etching has been developed for the on-chip cultivation of living cells using an agarose microchamber array. The method can be used to flexibly change the chamber structure by photo-thermal etching, even during the cultivation of cells, depending upon the progress in cell growth. We used an infrared (1064 nm) focused laser beam as a heat source to melt and remove agar gel at the heated spot on a thin chromium layer. The melting of the agar occurred just near the chromium thin layer, and the size of the photo-thermally etched area depended almost linearly on the power of the irradiated laser beam from 2 microm to 50 microm. Thus by using photo-thermal etching with adequate laser power we could easily fabricate narrow tunnel-shaped channels between the microchambers at the bottom of the agar-layer even during cell cultivation. After 48 h of cultivation of nerve cells, the nerve cells in two adjacent chambers made fiber connections through the fabricated narrow tunnel-shaped channels. These results suggest that photo-thermal etching occurred only in the area where an absorbing material was used, which means that it is possible to photo-thermally etch lines without damaging the cells in the microchambers. The results also suggest that the agar-microchamber cell cultivation system in combination with photo-thermal etching can potentially be used for the next stage of single cell cultivation including the real-time control of the interaction of cells during cell cultivation.  相似文献   

8.
An array of PDMS microchambers was aligned to an array of sensor electrodes and stimulating microelectrodes, which was used for the electrochemical monitoring of the metabolic activity of single isolated adult ventricular myocytes inside the chamber array, stimulated within a transient electric field. The effect of the accumulation of metabolic byproducts in the limited extracellular volume of the picolitre chambers was demonstrated by measuring single muscle cell contraction optically, while concomitant changes in intracellular calcium transients and pH were recorded independently using fluorescent indicator dyes. Both the amplitude of the cell shortening and the magnitude of the intracellular calcium transients decreased over time and both nearly ceased after 20 min of continuous stimulation in the limited extracellullar volume. The intracellular pH decreased gradually during 20 min of continuous stimulation after which a dramatic pH drop was observed, indicating the breakdown of the intracellular buffering capacity. After continuous stimulation, intracellular lactate was released into the microchamber through cell electroporation and was detected electrochemically at a lactate microbiosensor, within the chamber. A mitochondrial uncoupler was used to mimic ischaemia and thus to enhance the cellular content of lactate. Under these circumstances, intracellular lactate concentrations were found to have risen to ~15 mM. This array system has the potential of simultaneous electrochemical and optical monitoring of extracellular and intracellular metabolites from single beating heart cells at a controlled metabolic state.  相似文献   

9.
On-chip culture system for observation of isolated individual cells   总被引:2,自引:0,他引:2  
To investigate the properties of isolated single cells with their environment, we developed the differential analysis method for single cells using an on-chip microculture system. The advantages of the system are, (i). continuous cultivation of a series of isolated single cells or a group of cells under contamination free conditions, (ii). continuous observation and comparison of those cells with 0.2 microm spatial resolution by a phase-contrast/fluorescent microscopy system with digital image processing. The core of the system is an n x n (n = 20-50) array of chambers, where each is 20-70 microm in diameter and 5-30 microm deep holes etched into a biotin-coated 0.17 mm thick glass slide. The biotin-coated glass slide is covered with the streptavidin coated cellulose semipermeable membrane, which is fixed on the surface of the glass slide by streptavidin-biotin attachment, separating those holes from the nutrient medium circulating through a 'cover chamber' above. A single cell or group of cells can thus be isolated from environment perfused with the same medium, and the medium in each chamber can be changed within the diffusion time (<1/30 s). In addition, the microchamber volumes of specific cells or cell groups can be controlled by the sizes of the chambers. By using this system we found that the length of isolated Escherichia coli increased at 0.06 microm min(-1) between cell divisions regardless of the chamber volume, and that the cell concentration reached 10(12) cells ml(-1) under contamination free conditions. The system is thus particularly useful for one cell level analysis because the direct descendants of single cells can be cultured and compared in the isolated microchambers, and the physical properties of the cells in each microchamber can be continuously observed and compared.  相似文献   

10.
Cell-based high content screening using an integrated microfluidic device   总被引:3,自引:0,他引:3  
Ye N  Qin J  Shi W  Liu X  Lin B 《Lab on a chip》2007,7(12):1696-1704
High content screening (HCS) has quickly established itself as a core technique in the early stage of drug discovery for secondary compound screening. It allows several independent cellular parameters to be measured in a single cell or populations of cells in a single assay. In this work, we describe high content screening for the multiparametric measurement of cellular responses in human liver carcinoma (HepG2) cells using an integrated microfluidic device. This device consists of multiple drug gradient generators and parallel cell culture chambers, in which the processes of liquid dilution and diffusion, micro-scale cell culture, cell stimulation and cell labeling can be integrated into a single device. The simple assay provides multiparametric measurements of plasma membrane permeability, nuclear size, mitochondrial transmembrane potential and intracellular redox states in anti-cancer drug-induced apoptosis of HepG2 cells. The established platform is able to rapidly extract the maximum of information from tumor cells in response to several drugs varying in concentration, with minimal sample and less time, which is very useful for basic biomedical research and cancer treatment.  相似文献   

11.
We have developed a generic platform to undertake the analysis of protein copy number from single cells. The approach described here is 'all-optical' whereby single cells are manipulated into separate analysis chambers using an optical trap; single cells are lysed by a shock wave caused by laser-induced microcavitation, and the protein released from a single cell is measured by total internal reflection microscopy as it is bound to micro-printed antibody spots within the device. The platform was tested using GFP transfected cells and the relative precision of the measurement method was determined to be 88%. Single cell measurements were also made on a breast cancer cell line to measure the relative levels of unlabelled human tumour suppressor protein p53 using a chip incorporating an antibody sandwich assay format. These results suggest that this is a viable method for measuring relative protein levels in single cells.  相似文献   

12.
13.
A hydrogel‐based microchamber with organic electrodes for efficient electrical stimulations of human induced pluripotent stem cell‐derived cardiomyocytes (hiPSC‐CMs) is described. The microchamber is made from molecularly permeable, optically transparent, and electrically conductive polyvinyl alcohol (PVA) hydrogel and highly capacitive carbon electrode modified with poly(3,4‐ethylenedioxythiophene) (PEDOT). Spheroids of hiPSC‐CMs are cultured in microchambers, and electrically stimulated by the electrode for maturation. The large interfacial capacitance of the electrodes enables several days of electrical stimulation without generation of cytotoxic bubbles even when the electrodes are placed near the spheroids. The spheroids can be cultivated in the closed microchambers because of the permeated nutrients through the hydrogel, thus the spheroids are stably addressable and the culture medium around the sealed microchambers can be simply exchanged. Synchronized beating of the spheroids can be optically analyzed in situ, which makes it possible to selectively collect electrically responsive cells for further use. As the hydrogel is electrically conductive, the amount of electrical charge needed for maturing the spheroids can be reduced by configuring electrodes on the top and the bottom of the microchamber. The bioreactor will be useful for efficient production of matured hiPSC‐CMs for regenerative medicine and drug screening.  相似文献   

14.
We demonstrate that the concentration of a red blood cell solution under physiological conditions can be determined by electrochemical voltammetry. The magnitude of the oxygen reduction currents produced at an edge‐plane pyrolytic graphite electrode was diagnosed analytically at concentrations suitable for a point‐of‐care test device. The currents could be further enhanced when the solution of red blood cells was exposed to hydrogen peroxide. We show that the enhanced signal can be used to detect red blood cells at a single entity level. The method presented relies on the catalytic activity of red blood cells towards hydrogen peroxide and on surface‐induced haemolysis. Each single cell activity is expressed as current spikes decaying within a few seconds back to the background current. The frequency of such current spikes is proportional to the concentration of cells in solution.  相似文献   

15.
Xia F  Jin W  Yin X  Fang Z 《Journal of chromatography. A》2005,1063(1-2):227-233
A novel electrochemical method with a microfluidic device was developed for analysis of single cells. In this method, cell injection, loading and cell lysis, and electrokinetic transportation and detection of intracellular species were integrated in a microfluidic chip with a double-T injector coupled with an end-channel amperometric detector. A single cell was loaded at the double-T injector on the microfluidic chip by using electric field. Then, the docked cell was lysed by a direct current electric field strength of 220 V/cm. The analyte of interest inside the cell was electrokinetically transported to the detection end of separation channel and was electrochemically detected. External standardization was used to quantify the analyte of interest in individual cells. Ascorbic acid (AA) in single wheat callus cells was chosen as the model compound. AA could be directly detected at a carbon fiber disk bundle electrode. The selectivity of electrochemical detection made the electropherogram simple. The technique described here could, in principle, be applied to a variety of electroactive species within single cells.  相似文献   

16.
We demonstrate a concept for how a miniaturized 3-D cell culture in biological extracellular matrix (ECM) or synthetic gels bridges the gap between organ-tissue culture and traditional 2-D cultures. A microfluidic device for 3-D cell culture including microgradient environments has been designed, fabricated, and successfully evaluated. In the presented system stable diffusion gradients can be generated by application of two parallel fluid flows with different composition against opposite sides of a gel plug with embedded cells. Culture for up to two weeks was performed showing cells still viable and proliferating. The cell tracer dye calcein was used to verify gradient formation as the fluorescence intensity in exposed cells was proportional to the position in the chamber. Cellular response to an applied stimulus was demonstrated by use of an adenosine triphosphate gradient where the onset of a stimulated intracellular calcium release also depended on cell position.  相似文献   

17.
朱兰兰  殷学锋 《化学进展》2008,20(12):2045-2052
细胞内组分复杂、含量低,因此测定单细胞内化学组分的分析方法必须具有灵敏度高、选择性好和分辨率高的特点。高灵敏度的荧光检测技术是单细胞分析中应用最多的检测方法之一。但是细胞内绝大部分物质其天然态是没有荧光的,且由于细胞膜的阻碍,衍生试剂不能自由地进入细胞内。为了使衍生试剂透过细胞膜标记细胞内待测物质而不引起显著的稀释效应,已进行了大量的研究工作。本文综述了在单细胞分析中常用的荧光标记方法,包括细胞作为微反应器的衍生法,借助于脂质体与聚乙二醇(PEG)等增加细胞膜通透性的衍生方法和在毛细管/芯片毛细管电泳分析单细胞时柱上衍生和柱后衍生法以及量子点的标记法等。对这些方法的原理、特点和在单细胞分析中的应用也做了较为详细的阐述。  相似文献   

18.
Analysis of genetic and functional variability in populations of living cells requires experimental techniques capable of monitoring cellular processes such as cell signaling of many single cells in parallel while offering the possibility to sort interesting cell phenotypes for further investigations. Although flow cytometry is able to sequentially probe and sort thousands of cells per second, dynamic processes cannot be experimentally accessed on single cells due to the sub-second sampling time. Cellular dynamics can be measured by image cytometry of surface-immobilized cells, however, cell sorting is complicated under these conditions due to cell attachment. We here developed a cytometric tool based on refractive multiple optical tweezers combined with microfluidics and optical microscopy. We demonstrate contact-free immobilization of more than 200 yeast cells into a high-density array of optical traps in a microfluidic chip. The cell array could be moved to specific locations of the chip enabling us to expose in a controlled manner the cells to reagents and to analyze the responses of individual cells in a highly parallel format using fluorescence microscopy. We further established a method to sort single cells within the microfluidic device using an additional steerable optical trap. Ratiometric fluorescence imaging of intracellular pH of trapped yeast cells allowed us on the one hand to measure the effect of the trapping laser on the cells' viability and on the other hand to probe the dynamic response of the cells upon glucose sensing.  相似文献   

19.
The design and fabrication of a self‐digitization dielectrophoretic (SD‐DEP) chip with simple components for single‐cell manipulation and downstream nucleic acid analysis is presented. The device employed the traditional DEP and insulator DEP to create the local electric field that is tailored to approximately the size of single cells, enabling highly efficient single‐cell capture. The multistep procedures of cell manipulation, compartmentalization, lysis, and analysis were performed in the integrated microdevice, consuming minimal reagents, minimizing contamination, decreasing lysate dilution, and increasing assay sensitivity. The platform developed here could be a promising and powerful tool in single‐cell research for precise medicine.  相似文献   

20.
The design and fabrication of a self‐digitization dielectrophoretic (SD‐DEP) chip with simple components for single‐cell manipulation and downstream nucleic acid analysis is presented. The device employed the traditional DEP and insulator DEP to create the local electric field that is tailored to approximately the size of single cells, enabling highly efficient single‐cell capture. The multistep procedures of cell manipulation, compartmentalization, lysis, and analysis were performed in the integrated microdevice, consuming minimal reagents, minimizing contamination, decreasing lysate dilution, and increasing assay sensitivity. The platform developed here could be a promising and powerful tool in single‐cell research for precise medicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号