首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pierre C  Baudoin O 《Organic letters》2011,13(7):1816-1819
Polycyclic molecules were obtained in good yields by double C(sp(2))-H/C(sp(3))-H arylations mediated by a single palladium/phosphine catalyst. Both double intermolecular/intramolecular and intramolecular/intramolecular C-C couplings were performed successfully, which indicates that this concept has a broad applicability for the rapid construction of molecular complexity.  相似文献   

2.
《Tetrahedron》2019,75(24):3239-3247
An enantioselective palladium-catalyzed C(sp2)-H carbamoylation for the preparation of chiral isoindolines was described for the first time. With chiral monophosphorus ligand (R)-AntPhos as the ligand, a series of chiral isoindolines were prepared from diarylmethyl carbamoyl chlorides in excellent yields and enantioselectivities with the palladium loading as low as 1 mol%. Initial mechanistic studies indicated the asymmetric cyclization catalyzed a palladium species with a single chiral monophosphorus ligand.  相似文献   

3.
4.
A Cu(II) mediated oxidative C(sp(2))-H and C(sp(3))-H coupling protocol gives access to aza-oxindoles in good to excellent yield in the presence of NaOtBu as base and toluene as solvent.  相似文献   

5.
We report the efficient synthesis of alkyl ethers by the functionalization of unactivated sp(3)- and sp(2)-hybridized C-H bonds. In the Pd(OAc)(2)-catalyzed, PhI(OAc)(2)-mediated reaction system, picolinamide-protected amine substrates undergo facile alkoxylation at the γ or δ positions with a range of alcohols, including t-BuOH, to give alkoxylated products. This method features a relatively broad substrate scope for amines and alcohols, inexpensive reagents, and convenient operating conditions. This method highlights the emerging value of unactivated C-H bonds, particularly the C(sp(3))-H bond of methyl groups, as functional groups in organic synthesis.  相似文献   

6.
Unnatural a-amino acids have been extensively used in the modern drug discovery and protein engineering studies. They have also found applications in the development of chiral molecular catalysts and the total synthesis of diverse natural products. Accordingly the development of cost-effective approaches for the preparation of unnatural a-amino acids has received increasing attentions. Among all the available methods for this purpose, direct C–H functionalization of simple amino acids represents one of the most attractive approaches because it exhibits good atom-economy and step-efficiency. In particular, selective functionalization of either the primary or secondary C(sp~3)–H bonds in the amino acids has been explored to make versatile C–C, C–N, C–O, C–B and C–F bonds to modify the side chain of amino acids and even peptides. The present review surveys the recent advances of synthesis of chiral unnatural a-amino acids and peptides through palladium-catalyzed functionalization of un-activated C(sp~3)–H bonds.  相似文献   

7.
8.
9.
He G  Lu C  Zhao Y  Nack WA  Chen G 《Organic letters》2012,14(12):2944-2947
An efficient method has been developed for the synthesis of indoline compounds from picolinamide (PA)-protected β-arylethylamine substrates via palladium-catalyzed intramolecular amination of ortho-C(sp(2))-H bonds. These reactions feature high efficiency, low catalyst loadings, mild operating conditions, and the use of inexpensive reagents.  相似文献   

10.
11.
The direct oxidative C(sp3)-H functionalization reaction has long been considered as one of the most efficient and straightforward synthetic protocol for the construction of C-C bonds. Recently, the synthesis of substituted quinolines via C(sp3)-H functionalization of glycine derivatives has gained widespread attention from the chemists. Recent progresses on the C(sp3)-H functionalization of glycine derivatives and their applications in the synthesis of substituted quinolines are described in this paper. The aims are to broaden students' vision and stimulate their interest in scientific research through the introduction of innovative scientific research.  相似文献   

12.
The first transition-metal-catalyzed activation of silyl C(sp(3))-H bond was realized and synthetically applied. A variety of organic skeletons substituted with SiMe(3) groups could undergo the Pd-catalyzed intramolecular coupling reaction, resulting in an unprecedented synthetic method for yielding six-membered silacycles. It was found that the adjacent Si atom played an essential role for the activation of the C(sp(3))-H bond of the SiMe(3) group; no activation reaction of the C(sp(3))-H bond of the CMe(3) group took place under the same reaction conditions.  相似文献   

13.
A norbornene-mediated palladium-catalyzed sequence is described in which two alkyl-aryl bonds and one alkenyl-aryl bond are formed in one pot with use of microwave irradiation. A variety of symmetrical and unsymmetrical oxygen-, nitrogen-, silicon-, and sulfur-containing tricyclic heterocycles were synthesized from a Heck acceptor and an aryl iodide containing two tethered alkyl halides. This approach was further applied to the synthesis of a tricyclic mescaline analogue.  相似文献   

14.
Kamijo S  Hoshikawa T  Inoue M 《Organic letters》2011,13(21):5928-5931
A general protocol for direct transformation of unreactive C(sp(3))-H bonds to C(sp(3))-CN bonds has been developed. The C-H activation was effected by photoexcited benzophenone, and the generated carbon radical was subsequently trapped with tosyl cyanide to afford the corresponding nitrile in a highly efficient manner. The present methodology is widely applicable to versatile starting materials and, thus, serves as a powerful tool for selective one-carbon elongation for construction of architecturally complex molecules.  相似文献   

15.
Silicon-based cross-coupling has been recognized as one of the most reliable alternatives for constructing carbon–carbon bonds. However, the employment of such reaction as an efficient ring expansion strategy for silacycle synthesis is comparatively little known. Herein, we develop the first intermolecular silacyclization strategy involving Pd-catalyzed silicon-based C(sp2)–C(sp3) cross-coupling. This method allows the modular assembly of a vast array of structurally novel and interesting sila-benzo[b]oxepines with good functional group tolerance. The key to success for this reaction is that silicon atoms have a stronger affinity for oxygen nucleophiles than carbon nucleophiles, and silacyclobutanes (SCBs) have inherent ring-strain-release Lewis acidity.

Herein, we develop the first silacyclization between 2-halophenols and SCBs, which allows the modular assembly of sila-benzo[b]oxepines with good functional group tolerance and can be applied for the late-stage modification of biologically active molecules.  相似文献   

16.
The mechanism and intermediates of hydroalkylation of aryl alkynes via C(sp(3))-H activation through a platinum(II)-centered catalyst are investigated with density functional theory at the B3LYP/[6-31G(d) for H, O, C; 6-31+G(d,p) for F, Cl; SDD for Pt] level of theory. Solvent effects on reactions were explored using calculations that included a polarizable continuum model for the solvent (THF). Free energy diagrams for three suggested mechanisms were computed: (a) one that leads to formation of a Pt(II) vinyl carbenoid (Mechanism A), (b) another where the transition state implies a directed 1,4-hydrogen shift (Mechanism B), and (c) one with a Pt-aided 1,4-hydrogen migration (Mechanism C). Results suggest that the insertion reaction pathway of Mechanism A is reasonable. Through 4,5-hydrogen transfer, the Pt(II) vinyl carbenoid is formed. Thus, the stepwise insertion mechanism is favored while the electrocyclization mechanism is implausible. Electron-withdrawing/electron-donating groups substituted at the phenyl and benzyl sp(3) C atoms slightly change the thermodynamic properties of the first half of Mechanism A, but electronic effects cause a substantial shift in relative energies for the second half of Mechanism A. The rate-limiting step can be varied between the 4,5-hydrogen shift process and the 1,5-hydrogen shift step by altering electron-withdrawing/electron-donating groups on the benzyl C atom. Additionally, NBO and AIM analyses are applied to further investigate electronic structure changes during the mechanism.  相似文献   

17.
18.
Direct functionalization of inert C(sp3)–H bonds is a topic of immense contemporary interest and exceptional value in organic synthesis.The recent research has established a novel and practical protocol which features the engagement of vinyl cation species to functionalize C(sp3)–H bonds.The discussion of the topic is arranged by the strategies to generate the reactive intermediates,including ionization of vinyl triflates,addition of electrophiles to alkynes,tandem cyclization of enynes or diynes,and decomposition ofβ-hydroxy-α-diazo ketones.This review closes with a personal perspective on the dynamic research area of unactivated C(sp3)–H functionalization via vinyl cations.Hopefully,it will provide timely illumination and beneficial guidance for organic chemists who are interested in this area.Meanwhile continued development of the field is strongly anticipated in the future.  相似文献   

19.
吴江龙  王彦  李典军  杨金会 《化学通报》2021,84(12):1328-1337
氨基膦酸酯及其衍生物是一种重要的有机化合物,因其具有抗菌、抗真菌、酶抑制剂和催化抗体活性而广泛应于药物化学和农业化学。通过C(sp3)-H键活化构建C-P键的方法是合成氨基膦酸酯衍生物重要方法之一。本文以过渡金属体系和非金属体系进行分类,介绍了近年来通过C(sp3)-H键活化方法构建C-P键合成氨基膦酸酯类化合物的研究进展。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号