首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 809 毫秒
1.
(1) Background: The obesity epidemic has been drastically progressing in both children and adults worldwide. Pharmacotherapy is considered necessary for its treatment. However, many anti-obesity drugs have been withdrawn from the market due to their adverse effects. Instead, natural products (NPs) have been studied as a source for drug discovery for obesity, with the goal of limiting the adverse effects. Zebrafish are ideal model animals for in vivo testing of anti-obesity NPs, and disease models of several types of obesity have been developed. However, the evidence for zebrafish as an anti-obesity drug screening model are still limited. (2) Methods: We performed anti-adipogenic testing using the juvenile zebrafish obesogenic test (ZOT) and mouse 3T3-L1 preadipocytes using the focused NP library containing 38 NPs and compared their results. (3) Results: Seven and eleven NPs reduced lipid accumulation in zebrafish visceral fat tissues and mouse adipocytes, respectively. Of these, five NPs suppressed lipid accumulation in both zebrafish and 3T3-L1 adipocytes. We confirmed that these five NPs (globin-digested peptides, green tea extract, red pepper extract, nobiletin, and Moringa leaf powder) exerted anti-obesity effects in diet-induced obese adult zebrafish. (4) Conclusions: ZOT using juvenile fish can be a high-throughput alternative to ZOT using adult zebrafish and can be applied for in vivo screening to discover novel therapeutics for visceral obesity and potentially also other disorders.  相似文献   

2.
The small intestine is the primary site of dietary lipid absorption in mammals. The balance of nutrients, microorganisms, bile, and mucus that determine intestinal luminal environment cannot be recapitulated ex vivo, thus complicating studies of lipid absorption. We show that fluorescently labeled lipids can be used to visualize and study lipid absorption in live zebrafish larvae. We demonstrate that the addition of a BODIPY-fatty acid to a diet high in atherogenic lipids enables imaging of enterocyte lipid droplet dynamics in real time. We find that a lipid-rich meal promotes BODIPY-cholesterol absorption into an endosomal compartment distinguishable from lipid droplets. We also show that dietary fatty acids promote intestinal cholesterol absorption by rapid re-localization of NPC1L1 to the intestinal brush border. These data illustrate the power of the zebrafish system to address longstanding questions in vertebrate digestive physiology.  相似文献   

3.
斑马鱼作为一种重要的生物模型,为人类重大疾病的研究提供了更多的可行手段。然而传统的基于斑马鱼模型的研究常使用微孔板、烧杯或培养皿,方法通量及自动化程度低,且无法准确快速地提供药物刺激。微流控芯片作为一项新兴技术,以其独特的优势受到诸多科学工作者的青睐。该文对斑马鱼疾病模型的构建、基于微流控芯片和斑马鱼模型在药物筛选中的研究进展作了详细介绍和评价,并展望了其应用前景。  相似文献   

4.
Zebrafish (Danio rerio) is the widely used vertebrate model animal for understanding the complexity of development and disease process. Zebrafish has been also extensively used in understanding the mechanism of regeneration for its extensive capability of regenerating fins and other tissues. We have analyzed the proteome profile of zebrafish caudal fin in its native state based on one-dimensional gel electrophoresis LCMS/MS and two-dimensional gel electrophoresis MS/MS analyses. A total of 417 proteins were identified as zebrafish fin tissue specific, which includes 397 proteins identified based on one-dimensional gel electrophoresis LCMS/MS analysis and 101 proteins identified based on two-dimensional gel electrophoresis MALDI MS/MS. The proteins mapped to the zebrafish fin tissue were shown to be involved in various biological activities related to development, apoptosis, signaling and metabolic process. Focal adhesion, regulation of actin cytoskeleton, cancer-related pathways, mitogen-activated protein kinase signaling, antigen processing and presentation, and proteasome are some of the important pathways associated with the identified proteome data set of the zebrafish fin.  相似文献   

5.
The zebrafish has emerged as an excellent transitional screening model system between cell-based assays, which are rapid and inexpensive but have limited physiological relevance, and higher vertebrate models, which have better physiological relevance, but are more time-consuming and expensive to deploy. As vertebrates, zebrafish maintain significant evolutionary proximity to humans and have been validated as robust models for drug research, studies of mechanism and behavioral genetics. Unlike higher vertebrate models, zebrafish are well-suited to high-throughput applications owing to their high fecundity, rapid extrauterine development and transparency during organogenesis enabling in vivo labeling and imaging. Recent advances have been made in automating high content and high-throughput zebrafish screens, with the goal of developing fully automated drug screening platforms. The application and continued development of these technologies holds potential clinical significance in drug discovery and elucidating disease mechanisms.  相似文献   

6.
Zebrafish have several advantages compared to other vertebrate models used in modeling human diseases, particularly for large-scale genetic mutant and therapeutic compound screenings, and other biomedical research applications. With the impactful developments of CRISPR and next-generation sequencing technology, disease modeling in zebrafish is accelerating the understanding of the molecular mechanisms of human genetic diseases. These efforts are fundamental for the future of precision medicine because they provide new diagnostic and therapeutic solutions. This review focuses on zebrafish disease models for biomedical research, mainly in developmental disorders, mental disorders, and metabolic diseases.Subject terms: Disease model, Zebrafish  相似文献   

7.
The zebrafish embryo is a small, cheap, whole-animal model which may replace rodents in some areas of research. Unfortunately, zebrafish embryos are commonly cultured in microtitre plates using cell-culture protocols with static buffer replacement. Such protocols are highly invasive, consume large quantities of reagents and do not readily permit high-quality imaging. Zebrafish and rodent embryos have previously been cultured in static microfluidic drops, and zebrafish embryos have also been raised in a prototype polydimethylsiloxane setup in a Petri dish. Other than this, no animal embryo has ever been shown to undergo embryonic development in a microfluidic flow-through system. We have developed and prototyped a specialized lab-on-a-chip made from bonded layers of borosilicate glass. We find that zebrafish embryos can develop in the chip for 5 days, with continuous buffer flow at pressures of 0.005-0.04 MPa. Phenotypic effects were seen, but these were scored subjectively as 'minor'. Survival rates of 100% could be reached with buffer flows of 2 μL per well per min. High-quality imaging was possible. An acute ethanol exposure test in the chip replicated the same assay performed in microtitre plates. More than 100 embryos could be cultured in an area, excluding infrastructure, smaller than a credit card. We discuss how biochip technology, coupled with zebrafish larvae, could allow biological research to be conducted in massive, parallel experiments, at high speed and low cost.  相似文献   

8.
Exposure to mercury causes severe damage to various tissues and organs in humans. Concern over mercury toxicity has encouraged the development of efficient, sensitive, and selective methods for the in vivo detection of mercury. Although a variety of chemosensors have been exploited for this purpose, no in vivo monitoring systems have been described to date. In this report, we describe an irreversible rhodamine chemosensor-based, real-time monitoring system to detect mercury ions in living cells and, in particular, vertebrate organisms. The chemosensor responds rapidly, irreversibly, and stoichiometrically to mercury ions in aqueous media at room temperature. The results of experiments with mammalian cells and zebrafish show that the mercury chemosensor is cell and organism permeable and that it responds selectively to mercury ions over other metal ions. In addition, real-time monitoring of mercury-ion uptake by cells and zebrafish using this chemosensor shows that saturation of mercury-ion uptake occurs within 20-30 min in cells and organisms. Finally, accumulation of mercury ions in zebrafish tissue and organs is readily detected by using this rhodamine-based chemosensor.  相似文献   

9.

Background  

The farnesoid X receptor (FXR), pregnane X receptor (PXR), and vitamin D receptor (VDR) are three closely related nuclear hormone receptors in the NR1H and 1I subfamilies that share the property of being activated by bile salts. Bile salts vary significantly in structure across vertebrate species, suggesting that receptors binding these molecules may show adaptive evolutionary changes in response. We have previously shown that FXRs from the sea lamprey (Petromyzon marinus) and zebrafish (Danio rerio) are activated by planar bile alcohols found in these two species. In this report, we characterize FXR, PXR, and VDR from the green-spotted pufferfish (Tetraodon nigriviridis), an actinopterygian fish that unlike the zebrafish has a bile salt profile similar to humans. We utilize homology modelling, docking, and pharmacophore studies to understand the structural features of the Tetraodon receptors.  相似文献   

10.
The nematode (worm) C. elegans is one of the widely studied animal model organisms in biology. It develops through 4 larval stages (L1-L4) in 2 to 3 days before becoming a young adult. Biological assays involving C. elegans frequently require a large number of animals that are appropriately staged and exhibit a similar behaviour. We have developed a new method to synchronize animals that relies on the electrotactic response (electric field-induced motion) of C. elegans to sort them in parallel based on their age, size and phenotype. By using local electric field traps in a microfluidic device, we can efficiently sort worms from a mixed culture in a semi-continuous flow manner (with a minimum throughput of 78 worms per minute per load-run) and obtain synchronized populations of animals. In addition to sorting larvae, our device can also distinguish between young and old adults efficiently. Unlike fluorescent based sorting systems that use active imaging based feedback, this method is passive and automatic and uses the innate behaviour of the worm. Considering that the entire procedure takes only a few minutes to run and is cost-effective, it promises to simplify and accelerate experiments requiring homogeneous cultures of worms as well as to facilitate isolation of mutants that have abnormal electrotaxis. More importantly, our method of isolating and separating worms using locomotion as a defining characteristic promises development of advanced microfluidics-based systems to study the neuronal basis of movement-related defects in worms and facilitate high-throughput chemical screening and drug discovery.  相似文献   

11.
12.
Fluorescent probes have been used extensively to monitor biomolecules and biologically relevant species in vitro and in vivo. A new trend in this area that has been stimulated by the desire to obtain more detailed information about the biological effects of analytes is the change from live cell to whole animal fluorescent imaging. Zebrafish has received great attention for live vertebrate imaging due to several noticeable advantages. In this tutorial review, recent advances in live zebrafish imaging using fluorescent probes, such as fluorescent proteins, synthetic fluorescent dyes and quantum dots, are highlighted.  相似文献   

13.
14.
Phosphoproteins are principle cellular protein components with diverse regulatory functions and phosphorylation is the most frequent post-translational modifications of proteins. Immobilized metal affinity electrophoresis (IMAEP) is a recently developed technique by which the phosphoprotein components of the cellular samples could be captured. We have made use of this new methodology to capture the whole phosphoproteins of zebrafish brain. Since the elution and resolution of captured phosphoproteins by this new methodology are not yet quite developed, we have tried to make this new methodology more efficient in (1) capturing phosphoproteins from biological samples and (2) elution and resolution of captured phosphoproteins. In this project, we first examined the captured phosphoproteins from zebrafish whole brain samples, as a mixture of phosphoproteins and non-phosphoproteins, examined and resolved the captured phosphoproteins by electrophoresis, and finally eluted them successfully from the gel. In this work, we provided an efficient methodology for the elution of captured phosphoproteins from the gel which is an important development in IMAEP in the analysis of phosphoprotein component of cellular samples and showed the possibility of elution of the captured phosphoproteins. The developed methodology will potentially have wide applications in profiling phosphoproteins from biological samples like zebrafish brain and also in studies about signal transduction systems.  相似文献   

15.
Photoreaction of a blue-light photoreceptor Cryptochrome-DASH (Cry-DASH), a new member of the Cryptochrome family, from zebrafish was studied by UV-visible absorption spectroscopy in aqueous solutions at 293 K. Zebrafish Cry-DASH binds two chromophores, a flavin adenine dinucleotide (FAD) and a N5,N10-methenyl-5,6,7,8-tetrahydrofolate (MTHF) noncovalently. The bound FAD exists in the oxidized form (FAD(ox)) in the dark. Blue light converts FAD(ox) to the neutral radical form (FADH*). Formed FADH* is transformed to the fully reduced form FADH(2) (or FADH(-)) by successive light irradiation, or reverts to FAD(ox). FADH(2) (or FADH(-)) reverts to FADH* or possibly to FAD(ox) directly. The effect of dithiothreitol suggests a possible electron transfer between FAD in zebrafish Cry-DASH and reductants in the external medium. This is the first report on the photoreaction pathway and kinetics of a vertebrate Cry-DASH family protein.  相似文献   

16.
17.
In the present study, we established a practical and cost-effective high throughput screening assay, which relies on the measurement of the motility of Caenorhabditis elegans by infrared light-interference. Using this assay, we screened 14,400 small molecules from the “HitFinder” library (Maybridge), achieving a hit rate of 0.3%. We identified small molecules that reproducibly inhibited the motility of C. elegans (young adults) and assessed dose relationships for a subset of compounds. Future work will critically evaluate the potential of some of these hits as candidates for subsequent optimisation or repurposing as nematocides or nematostats. This high throughput screening assay has the advantage over many previous assays in that it is cost- and time-effective to carry out and achieves a markedly higher throughput (~10,000 compounds per week); therefore, it is suited to the screening of libraries of tens to hundreds of thousands of compounds for subsequent evaluation and development. The present phenotypic whole-worm assay should be readily adaptable to a range of socioeconomically important parasitic nematodes of humans and animals, depending on their dimensions and motility characteristics in vitro, for the discovery of new anthelmintic candidates. This focus is particularly important, given the widespread problems associated with drug resistance in many parasitic worms of livestock animals globally.  相似文献   

18.
Leonurine (1), an important ingredient in leonurus sibiricus L., can be used for some gynecological disease. We have developed a concise and efficient synthetic route of Leonurine, which can be optimized for mass production. Commercially available compound 6 and 2,3-dihydrofuran (7) were used as starting materials. And the toxicity study on zebrafish shows that Leonurine would promote the hatching of zebrafish embryos at low concentration and result in acute death or chronic lethal toxicity at high concentration.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号