首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Human red blood cell acetylcholinesterase was incorporated into planar lipid membranes deposited on alkanethiol self-assembled monolayers (SAMs) on gold substrates. Activity of the protein in the membrane was detected with a standard photometric assay and was determined to be similar to the protein in detergent solution or incorporated in lipid vesicles. Monolayer and bilayer lipid membranes were generated by fusing liposomes to hydrophobic and hydrophilic SAMs, respectively. Liposomes were formed by the injection method using the lipid dimyristoylphosphatidylcholine (DMPC). The formation of alkanethiol SAMs and lipid monolayers on SAMs was confirmed by sessile drop goniometry, ellipsometry, and electrochemical impedance spectroscopy. In this work, we report acetylcholinesterase immobilization in lipid membranes deposited on SAMs formed on the gold surface and compare its activity to enzyme in solution.  相似文献   

2.
Self-assembled monolayers (SAMs) were formed by the spontaneous adsorption of octythiocyanate (OTC) on Au(111) using both solution and ambient-pressure vapor deposition methods at room temperature and 50 degrees C. The surface structures and adsorption characteristics of the OTC SAMs on Au(111) were characterized by scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). The STM observation showed that OTC SAMs formed in solution at room temperature have unique surface structures including the formation of ordered and disordered domains, vacancy islands, and structural defects. Moreover, we revealed for the first time that the adsorption of OTC on Au(111) in solution at 50 degrees C led to the formation of SAMs containing small ordered domains, whereas the SAMs formed by vapor deposition at 50 degrees C had long-range ordered domains, which can be described as (radical3 x 2 radical19)R5 degrees structures. XPS measurements of the peaks in the S 2p and N 1s regions for the OTC SAMs showed that vapor deposition is the more effective method as compared to solution deposition for obtaining high-quality SAMs by adsorption of OTC on gold. The results obtained will be very useful in understanding the SAM formation of organic thiocyanates on gold surfaces.  相似文献   

3.
Self-assembled monolayers (SAMs) on gold surfaces based on three kinds of acetylthio-surfactant-encapsulated polyoxometalate clusters (thio-SECs) terminated with multiple CH(3)COS- groups, (NC(26)H(55)S(CO)CH(3))(6)H(2)[Co(H(2)O)CoW(11)O(39)], (NC(26)H(55)S(CO)CH(3))(13)H(3)[Co(4)(H(2)O)(2)(P(2)W(15)O(56))(2)], and (NC(26)H(55)S(CO)CH(3))(13)[Fe(4)(H(2)O)(2)(P(2)W(15)O(56))(2)]Br, have been prepared, which is representative of a general methodology to fabricate polyoxometalate-based SAMs. Thio-SECs self-assembled into monolayers on gold surfaces through the hydrolysis of CH(3)COS- groups and the subsequent formation of S-Au bonds, which was confirmed by grazing angle infrared spectroscopy, X-ray photoelectron spectroscopy, and ellipsometric and scanning tunneling microscopy (STM) measurements. Furthermore, the SAMs of the thio-SECs possess closely packed structures, and the local short-range order is clearly observed in the magnified STM image. We have also investigated the electrochemical behavior of SAMs of thio-SECs by cyclic voltammetry in detail, and the redox potential of the original polyoxometalates has been well retained. The electrochemical signals of the SAMs are very weak because of the small moiety of thio-SECs that are electrochemically accessible in the cyclic voltammetry experiments. The polyoxometalate-modified electrodes that we prepared are not only highly ordered in the local short range but also stable in electrochemical cycling because of the multiple S-Au bonds of thio-SECs on the gold substrates that aid in the construction of functional materials such as electrochemical and electrocatalytic devices.  相似文献   

4.
We report the fabrication and characterization of new self-assembled monolayers (SAMs) formed from dihexadecyldithiophosphinic acid [(C(16))(2)DTPA] molecules on gold substrates. In these SAMs, the ability of the (C(16))(2)DTPA headgroup to chelate to the gold surface depends on the morphology of the gold substrate. Gold substrates fabricated by electron-beam evaporation (As-Dep gold) consist of ~50-nm grains separated by deep grain boundaries (~10 nm). These grain boundaries inhibit the chelation of (C(16))(2)DTPA adsorbates to the surface, producing SAMs in which there is a mixture of monodentate and bidentate adsorbates. In contrast, gold substrates produced by template stripping (TS gold) consist of larger grains (~200-500 nm) with shallower grain boundaries (<2 nm). On these substrates, the low density of shallow grain boundaries allows (C(16))(2)DTPA molecules to chelate to the surface, producing SAMs in which all molecules are bidentate. The content of bidentate adsorbates in (C(16))(2)DTPA SAMs formed on As-Dep and TS gold substrates strongly affects the SAM properties: Alkyl chain organization, wettability, frictional response, barrier properties, thickness, and thermal stability all depend on whether a SAM has been formed on As-Dep or TS gold. This study demonstrates that substrate morphology has an important influence on the structure of SAMs formed from these chelating adsorbates.  相似文献   

5.
In-situ spectroscopic ellipsometry (SE) was utilized to examine the formation of the self-assembled monolayers (SAMs) of the water-soluble oligo(ethylene oxide) [OEO] disulfide [S(CH(2)CH(2)O)(6)CH(3)](2) {[S(EO)(6)](2)} and two analogous thiols - HS(CH(2)CH(2)O)(6)CH(3) {(EO)(6)} and HS(CH(2))(3)O(CH(2)CH(2)O)(5)CH(3) {C(3)(EO)(5)} - on Au from aqueous solutions. Kinetic data for all compounds follow simple Langmuirian models with the disulfide reaching a self-limiting final state (d=1.2nm) more rapidly than the full coverage final states of the thiol analogs (d=2.0nm). The in-situ ellipsometric thicknesses of all compounds were found to be nearly identical to earlier ex-situ ellipsometric measurements suggesting similar surface coverages and structural models in air and under water. Exposure to bovine serum albumin (BSA) shows the self-limiting (d=1.2nm) [S(EO)(6)](2) SAMs to be the most highly protein resistant surfaces relative to bare Au and completely-formed SAMs of the two analogous thiols and octadecanethiol (ODT). When challenged with up to near physiological levels of BSA (2.5mg/mL), protein adsorption on the final state [S(EO)(6)](2) SAM was only 3% of that which adsorbed to the bare Au and ODT SAMs.  相似文献   

6.
Self-assembled monolayers (SAMs) of 4,4'-terphenyl-substituted alkanethiols C6H5(C6H4)2(CH2)n-SH (TPn, n = 1-6) on Au (111) substrates were studied using scanning tunneling microscopy (STM) and infrared reflection absorption spectroscopy (IRRAS). When the SAMs were prepared at room temperature (RT, 298 K), TPn films (except TP2) exhibit an odd-even effect regarding both molecular orientation and packing density. For all investigated films, STM data reveals the presence of a large degree of lateral order. In the case of odd-numbered TPns, the films revealed a (2 square root(3) x square root(3))R30 degree molecular arrangement. For the even-numbered TP4 and TP6 SAMs, a c(5 square root(3) x 3) rectangular unit cell was found. The packing density for the even-numbered TPn SAMs is 25% lower than that for the odd-numbered TPn SAMs. When the SAMs were prepared at 333 K, the even-numbered SAMs were found to form structures with a significantly lower packing density. In the case of TP2, instead of the (2 square root(3) x square root(3))R30 degree structure formed at room temperature, a c(5 square root(3) x 3) structure was observed. For TP6 SAMs, the room-temperature c(5 square root(3) x 3) structure was replaced by a (6 square root(3) x 2 square root(3))R30 degree structure.  相似文献   

7.
Supported lipid bilayers (SLBs) formed on many different substrates have been widely used in the study of lipid bilayers. However, most SLBs suffer from inhomogeneities due to interactions between the lipid bilayer and the substrate. In order to avoid this problem, we have used microcontact printing to create patterned SLBs on top of ethylene-glycol-terminated self-assembled monolayers (SAMs). Glycol-terminated SAMs have previously been shown to resist absorbance of biomolecules including lipid vesicles. In our system, patterned lipid bilayer regions are separated by lipid monolayers, which form over the patterned hexadecanethiol portions of the surface. Furthermore, we demonstrate that α-hemolysin, a large transmembrane protein, inserts preferentially into the lipid bilayer regions of the substrate.  相似文献   

8.
碘离子的测量方法有化学法和电化学方法等多种,电化学方法有离子选择性电极、阴极溶出伏安法等[1,2],但以上方法易受共存离子的干扰.自组装膜修饰电极具有分子识别功能,因而可用于特定物质的检测[3].末端硫醇化的聚乙二醇分子在金电极表面形成自组装膜后具有分子识别特性[4],碘离子和聚乙二醇膜有较好的相容性,可以进入膜内进而到达电极表面进行反应,而其它干扰离子较难进入.因而,该膜电极能用于碘离子测定,检测下限低,并具有较强的抗干扰能力.1 实验部分1.1 试剂及仪器 甲氧基聚乙二醇(MW=5000)等…  相似文献   

9.
Self-assembled monolayers (SAMs) formed from semifluorinated dialkyldiselenol (CF(3)(CF(2))(5)(CH(2))(2)Se-)(2) (F6H2SeSeH2F6) on polycrystalline Au(111) and Ag(111) were characterized by high-resolution X-ray photoelectron spectroscopy, infrared reflection absorption spectroscopy, near edge X-ray absorption fine structure spectroscopy, scanning tunneling microscopy, and contact angle measurements. The Se-Se linkage of F6H2SeSeH2F6 was found to be cleaved upon the adsorption, followed by the formation of selenolate-metal bond. The resulting F6H2Se SAMs are well-ordered, densely packed, and contamination-free. The packing density of these films is governed by the bulky fluorocarbon part, which exhibits the expected helical conformation. A noncommensurate hexagonal arrangement of the F6H2Se molecules with an average nearest-neighbor spacing of about 5.8 +/- 0.2 A, close to the van der Waals diameter the fluorocarbon chain, was observed on Au(111). The orientation of the fluorocarbon chains in the F6H2Se SAMs does not depend on the substrate-the average tilt angle of these moieties was estimated to be about 21-22 degrees on both Au and Ag.  相似文献   

10.
The stability of self-assembled monolayers (SAMs) and multilayers formed on silicon surface by amino-terminated silanes and SAMs formed by alkyl and glycidyl terminated silanes were investigated in vitro with saline solution at 37 degrees C for up to 10 days. FTIR and XPS results indicated that amino-terminated SAMs and multilayers are very unstable if the alkyl chain is short ((CH2)3), while stable if the alkyl chain is long ((CH2)11). On the other hand, alkyl-terminated SAMs are very stable regardless of the alkyl chain length, and glycidyl terminated SAM retained approximately 77% of the organosilane molecules after 10 days. Hydrogen bonding between the organosilane monomer and silicon surface and among the organosilane monomers is believed to contribute to the instability of the SAM and multilayer formed by amino-terminated silane with a short alkyl chain ((CH2)3). Therefore, the widely used (3-aminopropyl) trimethoxysilane (APTMS) SAM and multilayer may not be suitable for implantable biomedical applications.  相似文献   

11.
Whereas thiols and thioethers are frequently used as binding units of oligodentate precursor molecules to fabricate self-assembled monolayers (SAMs) on coinage metal and semiconductor surfaces, their use for tridentate bonding configuration is still questionable. Against this background, novel tridentate thiol ligands, PhSi(CH(2)SH)(3) (PTT) and p-Ph-C(6)H(4)Si(CH(2)SH)(3) (BPTT), were synthesized and used as tripodal adsorbate molecules for the fabrication of SAMs on Au(111). These SAMs were characterized by X-ray photoelectron spectroscopy (XPS) and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. The PTT and BPTT films were compared with the analogous systems comprised of same tripodal ligands with thioether instead of thiol binding units (anchors). XPS and NEXAFS data suggest that the binding uniformity, packing density, and molecular alignment of the thiol-based ligands in the respective SAMs is superior to their thioether counterparts. In addition, the thiol-based films showed significantly lower levels of contamination. Significantly, the quality of the PTT SAMs on Au(111) was found to be even higher than that of the films formed from the respective monodentate counterpart, benzenethiol. The results obtained allow for making some general conclusions on the specific character of molecular self-assembly in the case of tridentate ligands.  相似文献   

12.
Two C(60) hexakis-adducts (2 and 3) were synthesized by using a protection-deprotection strategy. The symmetric fullerene tetrakis-adduct 8 was obtained by anthracene removal from the hexakis-adduct 7. Reaction of 8 with terpyridylglycine or pyridylglycine afforded two hexakis-adducts, 2 and 3. By using the retro-cyclopropanation reaction, the four malonate addends located on the equatorial belt of the hexakis-adducts were removed to afford two trans-1 bis-adducts, 4 and 5, with terpyridyl- or pyridylpyrrolidine groups. The structures of 2 and 3 were confirmed by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry, and (1)H, (13)C, and COSY NMR, and UV-visible spectroscopy. The cyclic voltammograms of fullerene multiadducts 2, 3, and 9 show irreversible reductions. Self-assembled monolayers (SAMs) of 1 and 3 were formed on gold surfaces through nitrogen adsorption. SAMs of 3 represent the first example of a fullerene hexakis-adduct formed on gold surfaces through nitrogen adsorption. Controlled potential electrolyses (CPE) were conducted to prepare trans-1 bis-adducts 4 and 5 modified with terpyridyl and pyridyl groups.  相似文献   

13.
Poly(ethylene glycol) (PEG) self-assembled monolayers (SAMs) are extensively used to modify substrates to prevent nonspecific protein adsorption and to increase hydrophilicity. X-ray photoelectron spectroscopy analysis, complemented by water contact angle measurements, is employed to investigate the formation and stability upon aging and heating of PEG monolayers formed on gold and silicon nitride substrates. In particular, thiolated PEG monolayers on gold, with and without the addition of an undecylic spacer chain, and PEG monolayers formed with oxysilane precursors on silicon nitride have been probed. It is found that PEG-thiol SAMs are degraded after less than two weeks of exposure to air and when heated at temperatures as low as 120 degrees C. On the contrary, PEG-silane SAMs are stable for more than two weeks, and fewer molecules are desorbed even after two months of aging, compared to those desorbed in two weeks from the PEG-thiol SAMs. A strongly bound hydration layer is found on PEG-silane SAMs aged for two months. Heating PEG-silane SAMs to temperatures as high as 160 degrees C improves the quality of the monolayer, desorbing weakly bound contaminants. The differences in stability between PEG-thiol SAMs and PEG-silane SAMs are ascribed to the different types of bonding to the surface and to the fact that the thiol-Au bond can be easily oxidized, thus causing desorption of PEG molecules from the surface.  相似文献   

14.
Lipid tubules represent a hollow, cylindrical supramolecular structure formed by rolled-up lipid bilayers. We find that the lipid tubules of 1,2-bis(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine can be bent into a loopike shape by the shrinking contact line of droplets on self-assembled monolayers (SAMs) of 1-dodecanethiol. The persistence length of individual lipid tubules is estimated to be approximately 41 microm. The radial deformation of the lipid tubules on SAMs is studied under applied load using atomic force microscope. The stiffness of the tubules in the radial direction is found to increase when the number of the lipid bilayers in the tubule wall increases.  相似文献   

15.
A hydrogen-bond forming tris(amide) receptor based on cyclotriveratrylene (CTV) was prepared. Self-assembled monolayers (SAMs) of the receptor were formed on gold surfaces. Desorption experiments show a surface coverage of 2.26 x 10(-10) mol/cm(2). (1)H NMR and UV measurements confirm that the receptor exhibits the highest affinity for acetate ions among the anions studied. Electrochemical impedance was used to investigate anion sensing by the SAMs and proved to be an efficient and convenient technique for detecting anions in aqueous solutions. Upon binding acetate anions, the monolayer-modified gold electrodes show a drastic increase of the R(ct) values when Fe(CN)(6)(3-/4-) is used as the redox probe. When the probe was changed to a positively charged one, Ru(NH3)(6)(3+/2+), the R(ct) values decreased monotonically as the acetate concentration was increased, thus confirming the accumulation of negative surface charge upon anion binding. H(2)PO(4-) shows some interference when sensing AcO-. Other monovalent anions such as Cl-, Br-, NO3(-) and HSO4(-) do not bind to the CTV receptor either in solution or on the surfaces.  相似文献   

16.
In this report, we present a new lithographic approach to prepare patterned surfaces. Self-assembled monolayers (SAMs) of the acid-labile trimethylsilyl ether (TMS-OC(11)H(22)S)(2) (TMS adsorbate) was formed on gold. 5-Mercapto-2-benzimidazole sulfonic acid sodium salt (MBS-Na(+)) was used as a ligand for gold nanoparticles. These monolayer-protected gold colloids (MPCs) were transformed into the catalytically active H(+)-form by ion exchange. This colloid-bound catalyst hydrolyzed the TMS adsorbate (TMS-OC(11)H(22)S)(2) both in solution and when self-assembled on gold surfaces. Microcontact printing of the active colloid-bound catalyst on the preformed TMS SAM led to the deposition of the colloid onto the SAMs. After the catalyst nanoparticles were rinsed off, a patterned surface was created as shown by AFM.  相似文献   

17.
Carboxyl-terminated self-assembled monolayers (SAMs) are commonly used in a variety of applications, with the assumption that the molecules form well-ordered monolayers. In this work, near-edge X-ray absorption fine structure measurements verify that well-ordered monolayers can be formed using acetic acid in the solvent. Disordered monolayers with unbound molecules present in the film result using only ethanol. A stark reorientation occurs upon deprotonation of the end group by rinsing in a KOH solution. This reorientation of the end group is reversible with tilted-over, hydrogen-bound carboxyl groups while the carboxylate ion end groups are upright. C(1s) photoemission shows that SAMs formed and rinsed with acetic acid in ethanol have protonated end groups, while SAMs formed without acetic acid have a large fraction of carboxylate-terminated molecules.  相似文献   

18.
Tribological properties of alkylsilane self-assembled monolayers   总被引:1,自引:0,他引:1  
In this study, we perform molecular dynamics simulations of adhesive contact and friction between alkylsilane Si(OH)(3)(CX(2))(10)CX(3) and alkoxylsilane Si(OH)(2)(CX(2))(10)CX(3) (where X = H or F) self-assembled monolayers (SAMs) on an amorphous silica substrate. The alkylsilane SAMs are primarily hydrogen-bonded or physisorbed to the surface. The alkoxylsilane SAMs are covalently bonded or chemisorbed to the surface. Previously, we studied the chemisorbed systems. In this work, we study the physisorbed systems and compare the tribological properties with the chemisorbed systems. Furthermore, we examine how water at the interface of the SAMs and substrate affects the tribological properties of the physisorbed systems. When less than a third of a monolayer is present, very little difference in the microscopic friction coefficient mu or shear stresses is observed. For increasing amounts of water, the values of mu and the shear stresses decrease; this effect is somewhat more pronounced for fluorocarbon alkylsilane SAMs than for the hydrocarbon SAMs. The observed decrease in friction is a consequence of a slip plane that occurs in the water as the amount of water is increased. We studied the frictional behavior using relative shear velocities ranging from v = 2 cm/s to 2 m/s. Similar to previously reported results for alkoxylsilane SAMs, the values of the measured stress and mu for the alkylsilane SAM systems decrease monotonically with v.  相似文献   

19.
The deposition and the subsequent decomposition of an organometallic precursor, (eta (3)-allyl)(eta (5)-cyclopentadienyl)palladium [Cp(allyl)Pd], on an organic surface exposed by self-assembled monolayers (SAM) was studied using X-ray photoelectron spectroscopy (XPS) and infrared reflection absorption spectroscopy (IRRAS). The interfacial chemical reactions of the vapor-deposited metal precursor with the pendant thiol group of the SAMs made from oligophenyldithiols, which are either prepared directly (terphenyldimethyldithiol, TPDMT) or by a deprotection route from SAMs formed by a monoacylated derivative of biphenyldimethyldithiol (dep. BPDMAc-1) have been studied in detail. When the TPDMT-SAMs were exposed to Cp(allyl)Pd vapor, a Pd (2+)/allyl-terminated SAM surface was obtained (to a lower extent this was also the case for dep. BPDMAc-1 SAMs), which was stable against exposure to H 2 gas. Reduction to Pd (0) by H 2 was only observed when small amounts of Pd (0) were already present, for example, after prolonged exposure to the precursor. The catalytic activity of the small Pd (0) particles also caused a decomposition of the SAMs upon exposure to air.  相似文献   

20.
3,8-Bis-hexadecyloxy-benzo[c]cinnoline (BBC16) self-assembled into two structures at highly oriented pyrolytic graphite (HOPG) surface: one was formed by molecules with a V-like configuration (C2v symmetry) and the other by molecules with a Z-like configuration (C(s) symmetry). The self-assembled structures could be tweaked by the solvents used. In the self-assembled monolayers (SAMs) on HOPG, the BBC16 molecule adopted the V-like configuration in polar solvents and the Z-like configuration in nonpolar solvents. Moreover, the solvent viscosity, solvent dissolvability of BBC16, and substrate temperature also played some roles in tuning the two-dimensional self-assembled structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号