首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
基于定向退火条件下的移动热区模型,采用相场法研究第二相颗粒对多晶材料中柱状晶结构形成的影响.结果表明:第二相颗粒对柱状晶结构的形成具有抑制作用,其抑制作用随第二相颗粒体积分数的增加和第二相颗粒尺寸的减小而增强.定向退火条件下第二相颗粒对晶粒极限尺寸的影响遵循Zener关系.为了获得良好的柱状晶结构,应尽量减少材料中第二相颗粒的体积分数及其在晶界上的弥散分布.  相似文献   

2.
《物理学进展》2016,36(2):46
固体在机械振动过程中由于材料内部原因引起的能量损耗称为内耗。晶界内耗峰是我国科 学家葛庭燧于1947 年用他发明的“葛氏扭摆” 在多晶纯铝中发现的。晶界内耗峰和相关的滞弹 性效应可以用滞弹性理论和粘滞性滑动模型给予合理的解释。这个内耗峰已被广泛地用来研究晶 界的动力学行为,杂质在晶界的偏聚,以及材料科学中相关的问题。 以往晶界内耗的研究大多数是用多晶试样进行的,其中包含了不同类型晶界的贡献。由于不 同类型晶界的结构和性质不同,因而多晶试样中的晶界内耗只能反映不同晶界的“平均效应”, 它的具体机制也难以解释清楚。 二十一世纪以来,人们对双晶试样(其中只包含单一晶界)中的晶界内耗进行了比较细致的 研究。实验结果表明,晶界内耗可以反映不同类型晶界的“个性”,因而可以应用于“晶界的设 计和控制”(或称“晶界工程”)。此外,新近还发现了晶界内耗中的“耦合效应” 和“补偿效 应”。这些发现加深了对晶界内耗机制的认识。 本文首先对以往多晶试样中的晶界内耗研究做一个简要的概述,然后介绍近年来双晶试样中 晶界内耗研究的新进展,并对晶界内耗的微观机制和应用前景进行分析和展望。  相似文献   

3.
马文  祝文军  张亚林  经福谦 《物理学报》2011,60(6):66404-066404
利用分子动力学方法研究了不同晶粒度的纳米多晶铁在冲击压缩下的结构相变过程,模拟结果表明:纳米多晶铁的冲击结构相变(由体心立方(bcc)结构 α 相到六角密排(hcp)结构 ε 相)发生的临界冲击应力在15 GPa左右.纳米多晶铁在经过弹性压缩变形后,晶界导致的塑性变形开始发生,然后大多数相变从晶界成核并最终发展为大规模相变.不同变形过程在应力和粒子速度剖面上能得到清晰的体现,并通过微观原子结构分析分辨.冲击压缩后的微观结构以晶界原子和以fcc结构原子充当孪晶界的hcp原子为主.晶粒度明显影响晶界变形及相变 关键词: 冲击相变 纳米多晶铁 冲击波 分子动力学  相似文献   

4.
何亮  杜磊  黄晓君  陈华  陈文豪  孙鹏  韩亮 《物理学报》2012,61(20):358-366
根据电子散射理论,多晶互连中,电阻主要起源于晶界处空位与空洞对电子的散射作用.通过引入自由体积的概念,模拟了晶界处电子的散射过程,建立了基于自由体积的噪声非高斯性表征模型.该模型表明,电迁移前期的噪声信号以高斯噪声为主,随电迁移过程将发生噪声信号从高斯性向非高斯性的突变,表明噪声产生机制发生了转变,并通过双相干系数对信号的非高斯性进行了定量表征.最终,通过实验初步证明了理论结果的正确性.  相似文献   

5.
采用分子动力学方法研究了晶粒尺寸对掺氦纳米多晶铁机械性能的影响.在拉伸形变过程中,纳米多晶铁将产生裂纹与晶格畸变,通过模拟XRD谱探索二者之间的联系.拉伸模拟结果显示,由于晶界氦原子的引入,峰值应力将显著减小.另外,在拉伸模拟中观察到,沿晶裂纹的产生与长大随着晶界氦原子的引入而增强.研究结果表明,晶界氦原子能够促进沿晶...  相似文献   

6.
孔庆平  蒋卫斌  石云  崔平  方前锋 《物理》2007,36(1):59-62
晶界内耗是中国科学家葛庭燧开创的一个研究领域.以往晶界内耗的研究主要是用多晶试样进行的.最近作者用不同取向差的双晶试样研究了单个晶界的内耗,取得了一些新的结果.文章综述了研究晶界内耗的意义以及新近的进展.  相似文献   

7.
以SiH4,Ar和H2为反应气体,采用射频等离子体化学气相沉积方法在300℃下制备了低温多晶Si薄膜.实验发现,反应气体中H2的比例是影响薄膜结晶质量的重要因素,在适量的H2比例下制备的多晶Si薄膜具有结晶相体积分数高,氢含量低,生长速率快、抗杂质污染等特性.  相似文献   

8.
由不同取向差的纯Al双晶的内耗实验观察到,不同类型晶界的弛豫参量有明显差别.用耦合模型对内耗数据的分析表明,小角度晶界内耗的基本机制是位错攀移,而大角度晶界内耗的基本机制是晶界扩散.在此基础上,对多晶中晶界内耗的一些特征也作了解释.  相似文献   

9.
张琪  王锦程  张亚丛  杨根仓 《物理学报》2011,60(8):88104-088104
采用晶体相场模型,模拟了二元合金多晶凝固及后续调幅分解全过程.结果表明,晶体相场模型可完整再现包括形核、生长、粗化、晶界形成等多晶生长过程以及圆满完成从凝固到调幅分解的多相变过程. 关键词: 晶体相场模型 多晶凝固 调幅分解 组织演化  相似文献   

10.
马文  陆彦文 《物理学报》2013,62(3):36201-036201
冲击波阵面反映材料在冲击压缩下的弹塑性变形行为以及屈服强度、应变率条件等宏观量, 还与冲击压缩后的强度变化联系. 本文使用分子动力学方法, 模拟研究了冲击压缩下纳米多晶铜中的动态塑性变形过程, 考察了冲击波阵面和弹塑性机理对晶界存在的依赖, 并与纳米多晶铝的冲击压缩进行了比较. 研究发现: 相比晶界对纳米多晶铝的贡献而言, 纳米多晶铜中晶界对冲击波阵面宽度的影响较小; 并且其塑性变形机理主要以不全位错的发射和传播为主, 很少观察到全位错和形变孪晶的出现. 模拟还发现纳米多晶铜的冲击波阵面宽度随着冲击应力的增加而减小, 并得到了冲击波阵面宽度与冲击应力之间的定量反比关系, 该定量关系与他人纳米多晶铜模拟结果相近, 而与粗晶铜的冲击压缩实验结果相差较大.  相似文献   

11.
Due to the large grain boundary (GB) volume fraction in nanocrystalline materials, interactions between GB and compositional domain boundary (CDB) play an important role in determining the nanoscale-modulated domain structures during spinodal decomposition. In the present paper, the phase field crystal model is employed to investigate the interactions between GB and CDB. Simulation results show that CDB coarsening can drive the GB migration and bring the impingement of particles with different orientations; the large volume fraction of GB can increase the dislocation volume fraction in CDBs but does not change its proportion in the whole defects number; the crossover point of the coarsening dynamic comes from the block effect of GB with large volume fraction.  相似文献   

12.
Abstract

The use of hydrostatic pressure as an intensive parameter for investigation of grain boundaries (GBs) migration in bicrystals is potentially important in gaining additional information on the mechanism of GB migration. This is because an analysis of the pressure dependence of the GB mobility yields a new activation parameter of the migration process, namely the activation volume V* which quantitatively is the difference between the volumes of the system in the ground and activated states. Only a few experiments to study the pressure dependence of GB mobility are known [1,2]. These experiments were made on polycrystalline materials. They provide the average data for all GBs in polycrystal and do not permit the determination of the connection between GB structure and value of activation volume V* of GB migration. In studying the mobility of single boundaries of a given type, there is the possibility of connecting the activation volume with the GB structural peculiarities, in particular, of determining the misorientation dependence of the activation volume, that is, of determining V* for GBs having various degrees of ordering.  相似文献   

13.
A new method is proposed for measuring the chemical composition of grain boundaries (GBs) in copper-based alloys not prone to embrittlement of boundaries. This method is based on embrittlement of copper GBs by bismuth penetrating from the gas phase of bismuth telluride (Bi2Te3). Chemical analysis of the GB surface is performed via Auger-electron spectroscopy. The GB composition is measured in a solid solution of silver (its volume concentration is 1.4 at %) and copper. The segregation annealing temperature is 570°C. The silver concentration across the broken surface of the GB (its thickness is five to ten atomic layers) is 4.7 at %. Therefore, the ratio between silver concentrations within the GB and the grain volume (the enrichment coefficient) is approximately 3.5.  相似文献   

14.
The grain boundary excess volume, i.e., the grain boundary expansion, e{GB}, was experimentally determined for high-angle grain boundaries in nickel using the direct technique of high-precision difference dilatometry. Values of e{GB}=(0.35±0.04)×10{-10} m and e{GB}=(0.32±0.04)×10{-10} m were obtained by measuring the removal of grain boundary volume upon grain growth for two different types of ultrafine-grained samples. The results are discussed in comparison to values obtained so far from indirect techniques and from computer simulations. It demonstrates the strength of the presented novel, direct approach for grain boundary expansion measurements.  相似文献   

15.
Migration of He atoms and growth of He bubbles in high angle twist grain boundaries(HAGBs) in tungsten(W) are investigated by atomic simulation method. The energy and free volume(FV) of grain boundary(GB) are affected by the density and structure of dislocation patterns in GB. The migration energy of the He atom between the neighboring trapping sites depends on free volume along the migration path at grain boundary. The region of grain boundary around the He bubble forms an ordered crystal structure when He bubble grows at certain grain boundaries. The He atoms aggregate on the grain boundary plane to form a plate-shape configuration. Furthermore, high grain boundary energy(GBE) results in a large volume of He bubble. Thus, the nucleation and growth of He bubbles in twist grain boundaries depend on the energy of grain boundary, the dislocation patterns and the free volume related migration path on the grain boundary plane.  相似文献   

16.
The nucleation behavior of He bubbles in single-crystal (sc) and nano-grain body-centered-cubic (bcc) Mo is simulated using molecular dynamics (MD) simulations, focusing on the effects of the grain boundary (GB) structure. In sc Mo, the nucleation behavior of He bubbles depends on irradiation conditions. He bubbles nucleate by either clustering of He atoms with pre-existing vacancies or self-interstitial-atom (SIA) punching without initial vacancies. In nano-grain Mo, strong precipitation of He at the GBs is observed, and the density, size and spatial distribution of He bubbles vary with the GB structure. The corresponding He bubble density is higher in nano-grain Mo than that in sc Mo and the average bubble size is smaller. In the GB plane, He bubbles distribute along the dislocation cores for GBs consisting of GB dislocations and randomly for those without distinguishable dislocation structures. The simulation results in nano-grain Mo are in agreement with previous experiments in metal nano-layers, and they are further explained by the effect of excess volume associated with the GBs.  相似文献   

17.
Deformation behaviors of bicrystalline and nano-polycrystalline structures of various tilt angles and inclination angles in two dimensions are investigated in detail using a two-mode phase field crystal model.The interaction between grain boundary(GB)and dislocation is also examined in bicrystals and nano-polycrystals that both contain asymmetric and symmetric tilt GBs,with energy analysis being carried out to analyze these processes.During deformation simulations,we assume the volume of each simulation cell at every time step is coincident with that of the initial state just before deformation.Our simulation results show that the behaviors of symmetric and asymmetric GBs in bicrystals and nano-polycrystals differ from each other depending on tilt angle and inclination angle.A new dislocation emission mechanism of interest is observed in bicrystals which contain low angle symmetric tilt GBs.Low angle GB has a higher mobility relative to high angle GB in both bicrystalline and nano-polycrystalline structures,as does asymmetric GB to symmetric GB.The generation,motion,pileup and annihilation of dislocations,grain rotation and grain coalescence are observed,which is consistent with the simulation results obtained by molecular dynamics.These simulation results can provide strong guidelines for experimentation.  相似文献   

18.

Purpose

To describe the patterns of bile distribution in the biliary tree, duodenum, jejunum, and stomach, and to determine the gallbladder ejection fraction (GBEF) by using functional magnetic resonance cholangiography (MRC) with gadolinium-ethoxybenzyl-diethylenetriamine penta-acetic acid (Gd-EOB-DTPA) in healthy volunteers.

Materials and Methods

Forty subjects were included in this study. After conventional MRC, pre-fatty meal MRC (PRFM) was obtained at 30, 40, 50, and 60 min after contrast agent injection. Then, post-fatty meal MRC (POFM) was obtained every 10 min for 1 h. We assessed the PRFM and POFM for opacification of contrast agent in the first- and second-order intrahepatic ducts (IHDs) and the common bile duct (CBD). Contrast agent opacification in the cystic duct was assessed, and the percentage volume of contrast agent filling in the gallbladder (GB) was calculated on PRFM. We calculated the GBEF and assessed the presence of contrast agent in the GB, duodenum, jejunum, and stomach.

Results

Thirty-six (90%) subjects showed grade 3 CBD opacification (visible contrast and well-defined bile duct border) on 60-min PRFM. Thirty-four (85%) subjects showed grade 3 first-order IHD opacification on 60-min PRFM. All (100%) subjects showed cystic duct opacification of contrast agent, and the average percentage volume of contrast agent filling in the GB was 68.81% ± 16.84% on 60-min PRFM. The GBEF at 30-min POFM was 35.00% ± 18.26%. Ten (25%) subjects had no contrast agent in the stomach and small bowel on all PRFMs. Twelve (30%) subjects had contrast medium in the stomach on PRFM and/or POFM.

Conclusions

Functional MRC with Gd-EOB-DTPA can allow determining the distribution of bile in the biliary tree and small intestine, as well as the GBEF.  相似文献   

19.
《Solid State Ionics》2006,177(1-2):159-163
8 mol% Yttria-stabilized zirconia (8YSZ) powder was prepared by coprecipitation. ZnO (0.5, 1.0, 2.0, 5.0, 10.0 wt.%) was added to the YSZ powder through a mechanical mixing method. The densification , microstructure and electrical properties of the YSZ ceramics sintered at 1300 °C for 2 h, were investigated. It was found that the small addition of ZnO was effective in reducing the sintering temperature and promoting the densification rate of the ceramics. The 5.0 wt.% ZnO-doped YSZ has ∼ 96% relative density, as compared to ∼ 89% relative density for the undoped sample. The total conductivity of 8YSZ was evidently increased by doping small amount of ZnO. For the 0.5 wt.% doped sample, the total conductivity of 2.89 × 10 2 Ω 1 cm 1 and an increase of 120% in conductivity were observed at 800 °C, as compared to that of the undoped one. We also found that the grain boundary (GB) conductivity could be improved by small addition of ZnO. At intermediate temperature (∼ 300 °C), the maximum enhancement of GB conductivity was observed with 5.0 wt% ZnO dopant. Finally, the volume percentage of GB in the ceramics was estimated by the brick layer model. The possible mechanism related to the improved GB conduction of the YSZ due to the ZnO additions was discussed.  相似文献   

20.
Fuhua Cao  Tao Hu 《哲学杂志》2018,98(6):464-483
Grain boundary extra free volume (GB EFV) can be considered as fundamental microstructural parameter for polycrystalline or nano-crystalline materials. Here, we present a systematic first principles study on a group of representative symmetric tilt grain boundaries of Al with various EFVs subjected to vacancy formation and Mg segregation. All grain boundaries were constructed using the coincident site lattice (CSL) and the structural unit (SU) models. It was found that the SU model is superior to the CSL in describing FCC-Al GBs, the same as we previously revealed for BCC-Fe. The predicted relation between GB misorientation angle and EFV, and the predicted EFV criteria for a stable GB, both agree with available experimental observations. Vacancy formation and Mg segregation show stronger preference to those GBs with high EFV values, due to the resultant high levels of atomic disorder. These findings not only provide a new, atomistic perspective on the significance of EFV, but also suggest a viable means of predicting GB properties based on direct experimental characterisation of GB EFVs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号