首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A facile strategy has been explored for loading noble metals onto the surface of ferrite nanoparticles with the assistance of phosphine‐functionalized linkers. Palladium loading is shown to occur with participation of both the phosphine function and the surface hydroxyl groups. Hybrid nanoparticles containing simultaneously Pd and Au (or Rh) are obtained by successive loading of metals. Similarly, ferrite nanoparticles decorated with Pd, Au, and Rh have also been formed by using the same strategy. The catalytic properties of the new nanoparticles are evidenced in processes such as reduction of 4‐nitrophenol or hydrogenation of styrene. Besides, the sequential process involving a cross‐coupling reaction followed by reduction of 1‐nitrobiphenyl has been successfully achieved by employing Pd/Au decorated nanoferrite particles.  相似文献   

2.
Core-shell Ag-Au nanoparticles from replacement reaction in organic medium   总被引:3,自引:0,他引:3  
The replacement reaction between hydrophobized Ag nanoparticles and hydrophobized AuCl4- in toluene has been examined in detail. The conclusions obtained under our experimental conditions are different from those reported in the literature in three aspects: (1) a detectable contraction of the Ag nanoparticle sacrificial templates during the course of the reaction is shown; (2) the deposition of Au on the shrunken Ag templates inhibits further Ag oxidation, resulting in the formation of core-shell Ag-Au nanoparticles instead of Au nanoshells; and (3) the significant red-shift in the surface plasmon resonance (SPR) band is more of a consequence of shape and chemical composition changes rather than as an indication of Au nanoshell formation. Solvent and temperature are influential environmental factors that determine the structure and composition of nanoparticles formed by the replacement reaction.  相似文献   

3.
Branagan SP  Bohn PW 《The Analyst》2012,137(17):3932-3939
Thin Au films, patterned by focused ion beam (FIB) milling to contain an array of subwavelength nanopores, exhibit enhanced optical transmission (EOT) via front-back resonance coupling. The films also serve as working electrodes capable of controlling the local potential, allowing electrochemical processes to be monitored using wavevector-resolved spectral mapping. The precise value of the surface plasmon resonance (SPR) wavevector can be extracted from the enhanced optical transmission signal and correlated with several distinct classes of electrochemical processes: double layer reorganization, faradaic adsorption/desorption, heterogeneous electron transfer, and anion adsorption. Specifically, the protonation/deprotonation reaction of an adsorbed monolayer of 4-mercaptobenzoic acid, the adsorption/desorption reaction of dodecanethiol to Au, the solution-phase reaction of ferri-ferrocyanide, and sulfate adsorption/desorption are investigated. A simple model is presented that encompasses both the EOT signal and electrochemical processes and produces semi-quantitative agreement with the SPR spectral wavevector mapping observed experimentally.  相似文献   

4.
Influence of rhodium addition to platinum on the activity of the alloy in methanol electrooxidation has been studied using Pt–Rh/Au limited volume electrodes with various surface compositions including the pure Pt and Rh metals. Electrochemical impedance spectroscopy (EIS) was used in the study. In the case of the Pt–Rh alloy, the impedance picture of methanol oxidation is qualitatively the same as for the pure Pt electrode. However, impedance spectra strongly depend on alloy composition. Equivalent circuits suitable for methanol oxidation on Pt were also used in the case of Pt–Rh and similar fitting results were obtained. A reaction mechanism suggested in the literature for Pt, which involves two strongly adsorbed intermediates competing for the same adsorption sites, is likely also for the Pt–Rh alloys. However, fittings with a corresponding impedance model were unsuccessful for both Pt and Pt–Rh because of mathematical caveats, such that quantitative comparisons were not possible. Nevertheless, EIS results suggest that Rh inhibits the kinetics of formation of reactive oxygen species at the surface of the alloy.  相似文献   

5.
The dehydrogenation reaction of methanol on a Rh(111) surface, a Rh(111)V subsurface alloy, and on a Rh(111)V islands surface has been studied by thermal-desorption spectroscopy, reflection absorption infrared spectroscopy, and density-functional theory calculations. The full monolayer of methanol forms a structure with a special geometry with methanol rows, where two neighboring molecules have different oxygen-rhodium distances. They are close enough to form a H-bonded bilayer structure, with such a configuration, where every second methanol C-O bond is perpendicular to the surface on both Rh(111) and on the Rh(111)V subsurface alloy. The Rh(111)V subsurface alloy is slightly more reactive than the Rh(111) surface which is due to the changes in the electronic structure of the surface leading to slightly different methanol species on the surface. The Rh(111)V islands surface is the most reactive surface which is due to a new reaction mechanism that involves a methanol species stabilized up to about 245 K, partial opening of the methanol C-O bond, and dissociation of the product carbon monoxide. The latter two reactions also lead to a deactivation of the Rh(111)V islands surface.  相似文献   

6.
利用密度泛函理论系统研究了贵金属原子(Au、Pd、Pt和Rh)在CeO2(111)表面的吸附行为。结果表明,Au吸附在氧顶位最稳定,Pd、Pt倾向吸附于氧桥位,而Rh在洞位最稳定。当金属原子吸附在氧顶位时,吸附强度依次为Pt > Rh > Pd > Au。Pd、Pt与Rh吸附后在Ce 4f、O 2p电子峰间出现掺杂峰;Au未出现掺杂电子峰,其d电子峰与表面O 2p峰在-4~-1 eV重叠。态密度分析表明,Au吸附在氧顶位、Pd与Pt吸附在桥位、Rh吸附在洞位时,金属与CeO2(111)表面氧原子作用较强,这与Bader电荷分析结果相一致。  相似文献   

7.
The catalytic water formation reaction on Pt(111) was investigated by kinetic Monte Carlo simulations, where the interaction energy between reaction species and the high mobility of H(2)O molecule was considered. Results obtained clearly reproduce the scanning tunneling microscopy images which show that the reaction proceeds via traveling the reaction fronts on the O-covered Pt(111) surface by creating H(2)O islands backwards. The reaction front is a mixed layer of OH and H(2)O with a (square root 3 x square root 3)R30(o) structure. Coverage change during the reaction is also reproduced in which the reaction consists of three characteristic processes, as observed by the previous experiments. The simulation also revealed that the proton transfer from H(2)O to OH plays an important role to propagate the water formation.  相似文献   

8.
Using scanning tunneling microscopy, low-energy electron diffraction, and X-ray photoelectron spectroscopy, we studied the evolution of the structure and chemical state of a Rh(110) surface, modified by K adlayers and exposed to high O2 doses at elevated temperatures. We find that oxygen coadsorption on the K-covered Rh(110) leads to massive reconstruction of the Rh(110) surface. Stable reconstructed (10 x 2) and (8 x 2) segmented phases with a local coverage of more than two oxygen atoms per surface Rh atom were observed. Formation of surface oxide, which coexists with the (10 x 2) and (8 x 2) segmented adsorption phases, is evidenced at the highest O2 doses. The development of strongly reconstructed adsorption phases with oxide-like stoichiometry and surface oxide under UHV conditions is explained in terms of the stabilization of the (1 x 2) reconstruction and promotion of O2 dissociation by the K adatoms.  相似文献   

9.
任斌  林旭锋  田中群 《电化学》2001,7(1):55-58
本文简要介绍了将铑电极用于表面增强拉曼光谱 (SERS)研究的方法 .具有较强活性的铑电极可以通过对电极施加方波电流进行恒电流粗糙获得 .对模型分子吡啶进行的表面拉曼光谱研究表明 ,该电极具有很好的稳定性和可逆性 ,并且其表面增强因子可达 4 0 0 0 .在对铑电极上一氧化碳的氧化过程进行的拉曼光谱研究中同时检测到桥式和线型吸附的C O和Pt C振动的拉曼信号 .本研究表明铑电极可作为多用的SERS基底 ,拉曼光谱可作为界面研究的通用工具 .  相似文献   

10.
The initial oxidation of the Rh(110) surface was studied by scanning tunneling microscopy, core level spectroscopy, and density functional theory. The experiments were carried out exposing the Rh(110) surface to molecular or atomic oxygen at temperatures in the 500-700 K range. In molecular oxygen ambient, the oxidation terminates at oxygen coverage close to a monolayer with the formation of alternating islands of the (10x2) one-dimensional surface oxide and (2x1)p2mg adsorption phases. The use of atomic oxygen facilitates further oxidation until a structure with a c(2x4) periodicity develops. The experimental and theoretical results reveal that the c(2x4) structure is a "surface oxide" very similar to the hexagonal O-Rh-O trilayer structures formed on the Rh(111) and Rh(100) substrates. Some of the experimentally found adsorption phases appear unstable in the phase diagram predicted by thermodynamics, which might reflect kinetic hindrance. The structural details, core level spectra, and stability of the surface oxides formed on the three basal planes are compared with those of the bulk RhO2 and Rh2O3.  相似文献   

11.
The reaction properties of Rh/TiO2 sodium tetrahydroborate hydrolysis catalysts reduced directly in the reaction medium depend on the temperature at which they were calcined. Raising the calcination temperature to 300°C enhances the activity of the Rh/TiO2 catalysts. Using diffuse reflectance electronic spectroscopy, photoacoustic IR spectroscopy, and chemical and thermal analyses, it is demonstrated that, as RhCl3 is supported on TiO2 (anatase), the active-component precursor interacts strongly with the support surface. The degree of this interaction increases as the calcination temperature is raised. TEM, EXAFS, and XANES data have demonstrated that the composition and structure of the rhodium complexes that form on the titanium dioxide surface during different heat treatments later determine the state of the supported rhodium particles forming in the sodium tetrahydroborate reaction medium.  相似文献   

12.
We report a LEEM and XPEEM study of the formation of a variety of stationary two-dimensional metallic and oxygen structures in Au and Au + Pd adlayers on Rh(110) during water formation reaction. They result from chemically frozen spinodal decomposition and are created, preserved, or reversibly modified by tuning the reaction conditions. The wavelength of lamellar structures obtained at intermediate metal coverage is found to obey a power scaling law with respect to the reaction rate.  相似文献   

13.
黄林  郭文硅 《分子催化》1993,7(5):365-376
在常压下,Rh_4(CO)_(12)或Rh_6(CO)_(16)簇合物衍生的Rh/SiO_2对乙烯,丙烯氯甲酰化反应表现出良好的催化活性和选择性,并有利于直线醛的形成.乙烯氢甲酰化体系的表面催化比活性与Rh分散性的关系表明.乙烯氢甲酰化反应具有结构敏感性,而乙烯加氢反应具有结构非敏感性,高分散的金属表面有利于主反应的选择性.通过红外光谱跟踪,发现表面Rh在反应气氛中显示零价.根据接触时间对催化反应的影响,推测多相烯烃氢甲酰化及加氢反应都在Ph~0活性中心上进行.另外,担载羰基铑簇合物的热分解红外研究结果指出,表面羰基化合物金属中心上的配位不饱和性对氢甲酰化催化活性似乎起着重要影响,簇合物只有完全脱羰才能提供高活性的催化中心.在反应气氛和CO气氛中,担载Rh_6(CO)_(16)表现出一致的热稳定性,说明反应气中的CO对稳定羰基物起着主导作用.  相似文献   

14.
An ab initio-based kinetic Monte Carlo algorithm was developed to simulate the direct decomposition of NO over Pt and different PtAu alloy surfaces. The algorithm was used to test the influence of the composition and the specific atomic surface structure of the alloy on the simulated activity and selectivity to form N2. The apparent activation barrier found for the simulation of lean NO decomposition over Pt(100) was 7.4 kcal/mol, which is lower than the experimental value of 11 kcal/mol that was determined over supported Pt nanoparticles. Differences are likely due to differences in the surface structure between the ideal (100) surface and supported Pt particles. The apparent reaction orders for lean NO decomposition over the Pt(100) substrate were calculated to be 0.9 and -0.5 for NO and O2, respectively. Oxygen acts to poison Pt. Simulations on the different Pt-Au(100) surface alloys indicate that the turnover frequency goes through a maximum as the Au composition in the surface is increased, and the maximum occurs near 44% Au. Turnover frequencies, however, are dictated by the actual arrangements of Pt and Au atoms in the surface rather than by their overall composition. Surfaces with similar compositions but different alloy arrangements can lead to very different activities. Surfaces composed of 50% Pt and 50% Au (Pt4 and Au4 surface ensembles) showed very little enhancement in the activity over that which was found over pure Pt. The Pt-Pt bridge sites required for NO adsorption and decomposition were still effectively poisoned by atomic oxygen. The well-dispersed Pt(50%)Au(50%) alloy, on the other hand, increased the TOF over that found for pure Pt by a factor of 2. The most active surface alloy was one in which the Pt was arranged into "+" ensembles surrounded by Au atoms. The overall composition of this surface is Pt(56.2%)Au(43.8%). The unique "+" ensembles maintain Pt bridge sites for NO to adsorb on but limit O2 as well as NO activation by eliminating next-nearest neighbor Pt-bridge sites. The repulsive interactions between two adatoms prevent them from sharing the same metal atoms. The decrease in the oxygen coverage leads to a greater number of vacant sites available for NO adsorption. This increases the NO coupling reaction and hence N2 formation. The inhibition of the rate of N2 formation by O2 is therefore suppressed. The coverage of atomic oxygen decreases from 53% on the Pt(100) surface down to 19% on the "+" ensemble surface. This increases the rate of N2 formation by a factor of 4.3 over that on pure Pt. The reaction kinetics over the "+" ensemble Pt(56.2%)Au(43.8%) surface indicate apparent reaction orders in NO and oxygen of 0.7 and 0.0, respectively. This suggests that oxygen does not poison the PtAu "+" alloy ensemble. The activity and selectivity of the PtAu ensembles significantly decrease for alloys that go beyond 60% Au. Higher coverages of Au shut down sites for NO adsorption and, in addition, weaken the NO and O bond strengths, which subsequently promotes desorption as well as NO oxidation. The computational approach identified herein can be used to more rapidly test different metal compositions and their explicit atomic arrangements for improved catalytic performance. This can be done "in silico" and thus provides a method that may aid high-throughput experimental efforts in the design of new materials. The synthesis and stability of the metal complexes suggested herein still ultimately need to be tested.  相似文献   

15.
The oxidation of CO in the presence of hydrogen (PROX process) was investigated on bimetallic Au-Rh catalysts at 300–373 K by Fourier transform infrared spectroscopy and mass spectroscopy. The effects of catalyst composition, reaction temperature and composition of the reacting gas mixtures have been studied. The IR studies revealed the formation of bi- and monodentate carbonates, bicarbonates and hydrocarbonates on the catalysts surfaces; these surface species proved to be not involved in the surface reactions. The formation of adsorbed formaldehyde was observed on all surfaces, except 1% (0.25Au+0.75Rh)/TiO2. Adsorbed CO2 (as the surface product of CO oxidation) was not detected on any surface. The presence of both O2 and H2 reduced the surface concentration of CO adsorbed on the metallic sites. Mass spectroscopic analysis of the gas phase showed that gaseous CO2 was formed in the highest amount in the CO+O2 mixture, the presence of H2 suppressed the amount of CO2 produced. This negative effect of H2 was the lowest on the 1% Rh/TiO2 and 1% (0.25Au+0.75Rh)/TiO2 catalysts.  相似文献   

16.
Electrochemical oxidation of freshly deposited Pd and its alloys with other noble metals (Au, Pt, Rh) was compared with the behavior of samples subjected to prior hydrogen absorption/desorption procedure. It was found that surface oxidation of hydrogen-treated Pd and Pd–Pt–Au deposits starts at lower potentials than on non-hydrided electrodes and is accompanied by a negative shift of surface oxide reduction peak. Pd and its alloys with Au, Pt and Rh after hydrogen treatment are also more resistant to electrochemical dissolution than freshly deposited samples.  相似文献   

17.
18.
Two-component adlayers consisting of cobalt(II) phthalocyanine (CoPc) and a metalloporphyrin such as 5,10,15,20-tetraphenyl-21H,23H-porphine copper(II) (CuTPP), 2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphine copper(II) (CuOEP), or 5,10,15,20-tetraphenyl-21H,23H-porphine cobalt(II) (CoTPP) were prepared by immersing either an Au(111) or Au(100) substrate in a benzene solution containing those molecules. The mixed adlayers thus prepared were investigated in 0.1 M HClO4 by cyclic voltammetry (CV) and in situ scanning tunneling microscopy (STM). The composition of the mixed adlayer consisting of CoPc and CuTPP molecules was found to vary with immersion time. CoPc molecules displaced CuTPP molecules during the modification process with increasing immersion time, and the CuTPP molecules were completely displaced by CoPc molecules in the mixed solution after a prolonged modification time, during which the underlying Au(100) substrate underwent phase transition from the reconstructed (hex) lattice to the unreconstructed (1 x 1) lattice. The two-component adlayer of CoPc and CuTPP was found to form a supramolecular adlayer with the constituent molecules arranged alternately on Au(100)-(hex). The striped structure was stable on Au(100)-(hex) at or near the open circuit potential (OCP), whereas the mixed adlayer was disordered on Au(100)-(1 x 1) at potentials more positive than OCP, where the phase transition of the arrangement of underlying Au atoms (i.e., the lifting of reconstruction) was induced electrochemically. A similar two-component supramolecular adlayer consisting of CoPc and CuTPP was formed on Au(111). A highly ordered, compositionally disordered adlayer of CoTPP and CuTPP was formed on Au(100)-(hex), suggesting that the adlayer structure is independent of the coordinated central metal ion for the formation of supramolecular nanostructures composed of those molecules. A supramolecular organization of CoPc and CuOEP was also found on Au(111). The surface mobility and the molecular reorganization of CoPc and CuOEP on Au(111) were tuned by modulation of the electrode potential. It is concluded that molecular assemblies of the two-component structure consisting of phthalocyanine and porphyrin were controlled not only by the crystallographic orientation of Au but also by the modulation of electrochemical potential.  相似文献   

19.
Mixed adlayers of 2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphine copper(II) (CuOEP) and cobalt(II) phthalocyanine (CoPc) were prepared by immersing Au(111) substrate in a benzene solution containing CuOEP and CoPc molecules, and they were investigated in 0.1 M HClO(4) by cyclic voltammetry (CV) and in-situ scanning tunneling microscopy (STM). The composition of the mixed adlayer consisting of CuOEP and CoPc molecules was found to vary depending on the immersion time. CoPc molecules displaced CuOEP molecules during the modification process with increasing immersion time, and the CuOEP molecules were completely replaced with CoPc molecules in the mixed solution after a long modification time. The two-component adlayer consisting of CuOEP and CoPc, which has a structure with the constituent molecules arranged alternately, was found to form either a p(9 x 3(square root)7R - 40.9 degrees) or a p(9 x 3(square root)7R - 19.1 degrees) structure, each involving two molecules on the Au(111) surface. The surface mobility and the molecular reorganization of CuOEP and CoPc were accelerated by modulation of the electrode potential. Different surface structures were produced at different electrode potentials, and hence potential modulation should allow a precisely controllable phase separation to take place in aqueous HClO(4).  相似文献   

20.
We demonstrate the multiple plasmonic effect on the photocurrent properties of photoanodes containing Ag or Au nanoparticles (NPs) loaded onto titanium dioxide film (Ag–TiO2 or Au–TiO2) on Au grating surfaces. Ag–TiO2 or Au–TiO2 nanocomposite particles are prepared by a flame spray pyrolysis route. The structures and morphologies of the prepared products are characterized by high‐resolution transmission electron microscopy. The Ag–TiO2 or Au–TiO2 composite NPs are deposited by spin coating onto the Au grating surfaces. The photoanode electrode is a layered structure of blu‐ray disc‐recordable grating substrate/Au/Ag (or Au)–TiO2/dye/electrolyte/indium‐tin oxide. The plasmonic effect is induced when Ag or Au NPs are located within the propagating surface plasmon (SP) field on the Au grating surface. The short‐circuit photocurrent is increased by exciting the grating‐coupled propagating SP on the Au gratings and is further enhanced by positioning the Ag or Au NPs within the grating‐coupled SP field. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号