首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The time behaviors of intermittent turbulence in Gledzer-Ohkitani-Yamada model are investigated. Two kinds of orbits of each shell which is in the inertial range are discussed by portrait analysis in phase space. We find intermittent orbit parts wandering randomly and the directions of unstable quasi-periodic orbit parts of different shellsform rotational, reversal and locked cascade of period three with shell number. We calculate the critical scaling of intermittent turbulence and the extended self-similarity of the two parts of orbit and point out that nonlinear scaling in inertial-range is decided by intermittent orbit parts.  相似文献   

2.
Random dynamical models obtained as a perturbation of the GOY (Gledzer-Ohkitani-Yamada) shell model for three-dimensional turbulence are defined. Both static (time-independent) and dynamical scaling properties of the randomly perturbed model are studied. The random static-inviscid manifold, in contrast to the dynamical evolution, does not show intermittent scaling laws. This behavior is linked to the absence of large deviation in the random-map connecting fluctuations of velocities at different scales. The importance of inviscid conserved quantities on the intermittent statistics is discussed. Different random dynamical perturbations such that only energy is conserved in the inviscid and unforced limit are investigated. Intermittency is weakly affected by random perturbations.  相似文献   

3.
We present the first study of the dynamic scaling or multiscaling of passive-scalar turbulence. For the Kraichnan version of passive-scalar turbulence we show analytically, in both Eulerian and quasi-Lagrangian frameworks, that simple dynamic scaling is obtained but with different dynamic exponents. By developing the multifractal model we show that dynamic multiscaling occurs in passive-scalar turbulence only if the advecting velocity field is itself multifractal. We substantiate our results by detailed numerical simulations in shell models of passive-scalar advection.  相似文献   

4.
We give an overview of the progress that has been made in recent years in understanding dynamic multiscaling in homogeneous, isotropic turbulence and related problems. We emphasise the similarity of this problem with the dynamic scaling of time-dependent correlation functions in the vicinity of a critical point in, e.g., a spin system. The universality of dynamic-multiscaling exponents in fluid turbulence is explored by detailed simulations of the GOY shell model for fluid turbulence.  相似文献   

5.
Intermittency is a basic feature of fully developed turbulence, for both velocity and passive scalars. Intermittency is classically characterized by Eulerian scaling exponent of structure functions. The same approach can be used in a Lagrangian framework to characterize the temporal intermittency of the velocity and passive scalar concentration of a an element of fluid advected by a turbulent intermittent field. Here we focus on Lagrangian passive scalar scaling exponents, and discuss their possible links with Eulerian passive scalar and mixed velocity-passive scalar structure functions. We provide different transformations between these scaling exponents, associated to different transformations linking space and time scales. We obtain four new explicit relations. Experimental data are needed to test these predictions for Lagrangian passive scalar scaling exponents.  相似文献   

6.
We propose a new approach to the old-standing problem of the anomaly of the scaling exponents of nonlinear models of turbulence. We construct, for any given nonlinear model, a linear model of passive advection of an auxiliary field whose anomalous scaling exponents are the same as the scaling exponents of the nonlinear problem. The statistics of the auxiliary linear model are dominated by "statistically preserved structures" which are associated with exact conservation laws. The latter can be used, for example, to determine the value of the anomalous scaling exponent of the second order structure function. The approach is equally applicable to shell models and to the Navier-Stokes equations.  相似文献   

7.
Electron transport phenomena in disordered electron systems with spin–orbit coupling in two dimensions and below are studied numerically. The scaling hypothesis is checked by analyzing the scaling of the quasi-1D localization length. A logarithmic increase of the mean conductance is also confirmed. These support the theoretical prediction that the two-dimensional metal in systems with spin–orbit coupling has a perfect conductivity. Transport through a Sierpinski carpet is also reported.  相似文献   

8.
Recent measurements of solar wind turbulence report the presence of intermittent, exponentially distributed angular discontinuities in the magnetic field. In this Letter, we study whether such discontinuities can be produced by magnetohydrodynamic (MHD) turbulence. We detect the discontinuities by measuring the fluctuations of the magnetic field direction, Δθ, across fixed spatial increments Δx in direct numerical simulations of MHD turbulence with an imposed uniform guide field B(0). A large region of the probability density function (pdf) for Δθ is found to follow an exponential decay, proportional to exp(-Δθ/θ(*)), with characteristic angle θ(*)≈(14°)(b(rms)/B(0))(0.65) for a broad range of guide-field strengths. We find that discontinuities observed in the solar wind can be reproduced by MHD turbulence with reasonable ratios of b(rms)/B(0). We also observe an excess of small angular discontinuities when Δx becomes small, possibly indicating an increasing statistical significance of dissipation-scale structures. The structure of the pdf in this case closely resembles the two-population pdf seen in the solar wind. We thus propose that strong discontinuities are associated with inertial-range MHD turbulence, while weak discontinuities emerge from dissipation-range turbulence. In addition, we find that the structure functions of the magnetic field direction exhibit anomalous scaling exponents, which indicates the existence of intermittent structures.  相似文献   

9.
We report measurements of the Lagrangian velocity structure functions of orders 1 through 10 in a high Reynolds number (Taylor microscale Reynolds numbers of up to R(lambda) = 815 ) turbulence experiment. Passive tracer particles are tracked optically in three dimensions and in time, and velocities are calculated from the particle tracks. The structure function anomalous scaling exponents are measured both directly and using extended self-similarity and are found to be more intermittent than their Eulerian counterparts. Classical Kolmogorov inertial range scaling is also found for all structure function orders at times that trend downward as the order increases. The temporal shift of this classical scaling behavior is observed to saturate as the structure function order increases at times shorter than the Kolmogorov time scale.  相似文献   

10.
Intermittency effects and the associated multiscaling spectrum of exponents are investigated for impurities advection in tokamak edge plasmas. The two-dimensional Hasagawa-Wakatani model of resistive drift-wave turbulence is used as a paradigm to describe edge tokamak turbulence. Impurities are considered as a passive scalar advected by the plasma turbulent flow. The use of the extended self-similarity technique shows that the structure function relative scaling exponent of impurity density and vorticity follows the She-Leveque model. This confirms the intermittent character of the impurities advection in the turbulent plasma flow and suggests that impurities are advected by vorticity filaments.  相似文献   

11.
We propose a new approach to the old-standing problem of the anomaly of the scaling exponents of passive scalars of turbulence. Different to the original problem, the distribution function of the prescribed random velocity field is multi-dimensional normal and delta-correlated in time. Here, our random velocity field is spatially correlative. For comparison, we also give the result obtained by the Gaussian random velocity field without spatial correlation. The anomalous scaling exponents H(p) of passive scalar advected by two kinds of random velocity above are determined for structure function up to p=15 by numerical simulations of the random shell model with Runge-Kutta methods to solve the stochastic differential equations. We observed that the H(p)'s obtained by the multi-dimensional normal distribution random velocity are more anomalous than those obtained by the independent Gaussian random velocity.  相似文献   

12.
We consider shell models that display an inverse energy cascade similar to two-dimensional turbulence (together with a direct cascade of an enstrophylike invariant). Previous attempts to construct such models ended negatively, stating that shell models give rise to a "quasiequilibrium" situation with equipartition of the energy among the shells. We show analytically that the quasiequilibrium state predicts its own disappearance upon changing the model parameters in favor of the establishment of an inverse cascade regime with Kolmogorov scaling. The latter regime is found where predicted, offering a useful model to study inverse cascades.  相似文献   

13.
In this paper we give a formulation of two-dimensional (2D) collisionless magnetohydrodynamic (MHD) turbulence that includes the effects of both electron inertia and electron pressure (or parallel electron compressibility) and is applicable to strongly magnetized collisionless plasmas. We place particular emphasis on the departures from the 2D classical MHD turbulence results produced by the collisionless MHD effects. We investigate the fractal/multi-fractal aspects of spatial intermittency. The fractal model for intermittent collisionless MHD turbulence appears to be able to describe the observed k−1 spectrum in the solar wind. Multi-fractal scaling behaviors in the inertial range are first deduced, and are then extrapolated down to the dissipative microscales. We then consider a parabolic-profile model for the singularity spectrum f (α), as an explicit example of a multi-fractal scenario. These considerations provide considerable insights into the basic mechanisms underlying spatial intermittency in 2D fully developed collisionless MHD turbulence.  相似文献   

14.
15.
We review some advances in the theory of homogeneous, isotropic turbulence. Our emphasis is on the new insights that have been gained from recent numerical studies of the three-dimensional Navier Stokes equation and simpler shell models for turbulence. In particular, we examine the status of multiscaling corrections to Kolmogorov scaling, extended self similarity, generalized extended self similarity, and non-Gaussian probability distributions for velocity differences and related quantities. We recount our recent proposal of a wave-vector-space version of generalized extended self similarity and show how it allows us to explore an intriguing and apparently universal crossover from inertial- to dissipation-range asymptotics.  相似文献   

16.
17.
In this paper, some examples, such as iterated functional systems, scaling equation of wavelet transform,and invariant measure system, are used to show that the homoclinic orbit solutions exist in the functional equations too.And the solitary wave exists in generalized dynamical systems and functional systems.  相似文献   

18.
We study the small-scale statistics of active and passive scalar fields, obtained from 3D large-eddy simulations of the atmospheric boundary layer turbulence. The velocity field is anisotropic and inhomogeneous, due to the action of both buoyancy and shear. We focus on scalar field rare fluctuations dominated by the so-called fronts. Temperature, coupled to the velocity field by the Boussinesq equations, exhibits anomalous scaling and saturation of the scaling exponents to a constant value, due to the presence of thermal fronts. Although qualitatively similar, the small-scale statistics of a passive tracer advected by the convective flow shows quantitative differences: the large fluctuations of the tracer concentration field distribute differently and appear to be less intermittent than the temperature ones. To better understand these results, the role of boundaries in this problem is discussed.  相似文献   

19.
This paper reports the effect of inlet flow turbulence intensity on the combustion instability characteristics in a backward facing step combustor. The inlet turbulence intensity is varied by a turbulence generator. Unsteady pressure measurements and OH* chemiluminescence images are recorded over a wide range of operating conditions at different inlet turbulence intensities. The study shows an early onset of instability at low turbulence level, i.e., higher turbulence postpones the onset of instability to higher Reynolds number Re and/or higher equivalence ratio Φ. The early onset of instability in the Re and Φ parameter spaces is due to the change in system parameters such as flame speed and size of the recirculation zone downstream of the step at different turbulence levels. Further, the onset is characterized as subcritical bifurcation. At low Re, the hysteresis zone width is small for low turbulence levels and it is large at higher turbulence levels; and at higher Re, the hysteresis width remains constant at all turbulence levels. Investigation of instability characteristics reveals that there are momentary slippages from limit cycle orbit into brief silent regimes in an intermittent manner. The frequency of occurrence of the momentary silent regimes increases with reduction in turbulence, indicating that higher turbulence helps in maintaining the system in a stable limit cycle orbit. High-speed chemiluminescence imaging reveals the necessity of the vortex rollup in the recirculation zone to grow up to the top wall by dilatation from the heat release for the onset of instability. Considerations of the effect of turbulence on both the flame speed and the recirculation zone size together explain all the observed bifurcation trends. These results suggest that inlet flow turbulence should not just be considered as background noise. The turbulence effects on both the flame and flow should be considered in predicting the instability characteristics.  相似文献   

20.
Three-dimensional turbulence is analyzed by wavelet transform. To keep the number of degrees of freedom in appropriate bounds, a reduced set of wavelets is used. Integrating the equation of motion, the following results are obtained: We find strong intermittent fluctuations of the energy dissipation rate and of the vorticity in the viscous range. The vorticity shows the tendency of alignment with the direction of least shear and is organized within elongated tubes. Inertial range properties of the flow are addressed by means of an eddy viscosity or by strongly reducing the spatial resolution of the wavelet basis. In the high Reynolds number limit there seem to be hardly any scaling corrections to the ?5/3-law in accordance with other recent results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号