首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The luminescence parameters of Eu(III) and Tb(III) complexes with fluorinated amide derivatives of hydroxyquinoline carboxylic acid (L1–8) were studied. It was shown that medicinal preparations, salts of organic bases, can be determined from the effect of their anions on the luminescence of Eu(III)-sensitizing ligand complexes. The Eu(III)-L1-citrate ion and Eu(III)-L2-tartrate ion complexes were proposed for the luminescence determination of clomiphene and tamoxifen citrates and platyphyllin tartrate, respectively. The detection limits were 0.30 μg/mL for clomifene (tamoxifen) citrate and 0.85 μg/mL for platyphyllin tartrate.  相似文献   

2.
Four ternary complexes of Tb(III) were synthesized by introducing the first ligand (L1) (N-phenylanthranilic acid (N-HPA), α-furoic acid (FURA)) and the second ligand (L2) (1,10-phenanthroline (Phen), 2,2′-dipyridyl (Bipy)), respectively. These complexes were characterized by elemental analysis, infrared spectra, XRD, UV spectra and fluorescence spectra. The effect of L1 and L2 on the fluorescence properties of terbium complexes was discussed. It showed that all the complexes exhibited ligand-sensitized green emission. The fluorescent intensity increased in the sequence of Tb(FURA)3Bipy < Tb(N-PA)3Phen < Tb(FURA)3Phen < Tb(N-PA)3Bipy. It indicated that L1 affected fluorescence properties of the complexes differently when the corresponding L2 altered. Meanwhile, the influence of L2 on the luminescence properties of the complexes also depends on L1. The results showed that L1 and L2 affected each other and worked together as a whole. The matching of L1, L2 and Tb3+ ion is very important to the luminescence properties of Tb(III) ternary complexes.  相似文献   

3.
It was found that the presence of DNA significantly enhanced the 4f luminescence of terbium(III) in its complexes with a number of 2-oxo-4-hydroxyquinoline-3-carboxylic acid amide derivatives (L1-L6). For the high-sensitivity determination of DNA, L1 and L4 were chosen from two proposed groups, in complexes with which terbium ions exhibited the most intense luminescence. Under optimum conditions, the luminescence intensity of terbium was proportional to the concentration of DNA over the ranges 0.025–1.2 μg/mL (detection limit of 10 ng/mL) and 0.01–1.2 λg/mL (detection limit of 3 ng/mL) for L1 and L4, respectively. The mechanisms of the interaction of Tb-L complexes with DNA molecules were hypothesized.  相似文献   

4.

The green colored trithiocarbamato complexes of dirhenium(III,III) of type [Re2(μ-η2-SLR)22-LR)3][ReO4] (4(LR)), where LR represents the dithiocarbamato ligands [LR?=?S2CNEt2, 4(LEt) and S2CN(CH2)4, 4(LPyr)], have been synthesized in moderate yield by reacting Re2(μ-O2CCH3)4Cl2 (1) and sodium salt of diethyldithiocarbamate or pyrrolidinedithiocarbamate in boiling ethanol under nitrogen atmosphere. The spectral (IR, UV–vis, NMR) and electrochemical properties of the complexes are reported. The identity of complex 4(LEt) has been established by single-crystal X-ray structure determination. The density functional theory (DFT) calculations rationalized the electronic structure of complexes 4(LR) in comparison with dithiocarbamato complexes of dirhenium(II,II) and dirhenium(III,II). The absorption spectra of the 4(LR) complexes are scrutinized by the time-dependent DFT analysis.

  相似文献   

5.
(Extraction of alkali on alkaline earth metal ions with (sym-dibenzo-14-crown-4-oxy)- and (sym-dibenzo-16-crown-5-oxy)-carboxylic acids.)The extraction of lithium, sodium, potassium, calcium and some other metal ions with dibenzo-4-crown-4-oxy- and dibenzo-16-crown-5-oxycarboxylic acids containing the groups -CH2COOH, -(CH2)2COOH, -(CH2)3COOH, -CH(C2H5)COOH and -CH(C4H9)COOH was studied. The extraction increases as a function of the lipophilic character of the carboxylic acid group. Calcium, barium and strontium ions are better extracted than Li+, Na+ and K+; there are only small differences among the alkaline earth metal ions. Evaluated from the extraction data, the composition of the extracted species was 1:1 (metal/ligand) for Li+, and 1:2 for CaCa2+; Na+ and K+ favour the formation of 1:2 complexes with dibenzo-14-crown-4-derivatives bbut 1:1 complexes with dibenzo-16-crown-5-oxy-carboxylic acids. The dependence of the distribution ratio on pH does not provide unequivocal evidence for the composition of the extracted compounds.  相似文献   

6.
The acetate bearing dithioether, sodium di(2-carboxymethylsufanyl)maleonitrile, L1 upon reaction with [RuII(bpy)2Cl2]·2H2O, [RuII(phen)2Cl2]·2H2O, [RuIII(bpy)2Cl2]+ or [RuIII(phen)2Cl2]+ in methanol formed complexes of the type [(bpy)2Ru{S2(CH2COO)2C2(CN)2}], (1), [(phen)2Ru{S2(CH2COO)2C2(CN)2}], (2), [(bpy)2Ru{(OOCCH2)2S2C2(CN)2}]+, (5) and [(phen)2Ru{(OOCCH2)2S2C2(CN)2}]+, (6) respectively. Four other Ru(III) complexes with di(benzylsulfanyl)maleonitrile, L2, [(bpy)2Ru{S2(PhCH2)C2(CN)2}]3+, (7) and [(phen)2Ru{S2(PhCH2)2C2(CN)2}]3+, (8), and with acetate, [(bpy)2Ru(OOCCH3)2]+, (9) and [(phen)2Ru(OOCCH3)2]+, (10) were also synthesized. In the cyclic voltammetry, complexes (1) and (2) exhibited quasireversible oxidation waves at 1.01 and 1.02 V vs. Ag/AgCl over GC electrode in DMF, while the corresponding Ru(III) L1 complexes (5) and (6) exhibit reversible oxidation at E1/2 0.59 and 0.58 V, respectively, under identical conditions. This is unlike the voltammetric behavior of the Ru(II) and Ru(III) L2 complexes, wherein the complex pairs (3), (7) and (4), (8) exhibited identical voltammograms with single reversible one electron waves at E1/2 0.98 and 0.92 V, respectively under identical conditions. The voltammograms of Ru(II)-L2 complexes (3) and (4) also became irreversible in presence of nearly four molar equivalent of sodium acetate. Hence, the irreversible redox behavior of complexes (1) and (2) has been interpreted in terms of rapid linkage isomerization, i.e. shift in κ2-S,S′ to κ2-O,O′ coordination, following the Ru(II)/Ru(III) electrode process. The electronic spectra of Ru(III)-L1 complexes (5) and (6) resemble closely with that of (9) and (10) instead of Ru(III)-L2 complexes (7) and (8), further supports proposed linkage isomerization. The cationic complexes were obtained as [PF6] salts and all compounds were characterized using analytical and spectral (IR, 1H NMR, UV-vis and mass) data.  相似文献   

7.
Two polypyridyl ligands, 5-(4′-ethynylbenzo-15-crown-5)-2,2′-bipyridine (L1) and 3-bromo-8-(4′-ethynylbenzo-15-crown-5)-1,10-phenanthroline (L2), and their Ru(II) complexes [(bpy)2RuL](PF6)2 have been prepared and characterized. Both complexes exhibit metal-to-ligand charge transfer absorption at around 452 nm and emission at around 640 nm in MeCN solution. Electrochemical studies of the complexes reveal a Ru(II)-centered oxidation at around 1.31 V and three ligand-centered reductions. The binding ability of the complexes with Na+ has been investigated by UV/Vis absorption, emission, and electrochemical titrations. Addition of Na+ to MeCN solutions of both complexes results in a progressive enhancement of the emission, a red-shift of the UV/Vis absorption, and a progressive cathodic shift of the Ru(II)-centered E 1/2 couple. The stability constants for the 1:1 stoichiometry adducts of the complexes with Na+ have been obtained from the UV/Vis absorption titrations.  相似文献   

8.
N'-[4'-benzo(15-crown-5)]-4-tolylaminoglyoxime (H2L1),the sodium chloride salt of H2L1 (H2L1...NaCl),N'-[4'-benzo(15-crown-5)]-4-chlorophenylaminoglyoxime(H2L2) and the sodium chloride salt of H2L2 (H2L2...NaCl)have been prepared from p-chlorophenylchloroglyoxime,p-tolylchloroglyoxime, 4'-aminobenzo[15-crown-5] and sodiumbicarbonate or sodium bicarbonate and sodium chloride. Nickel (II),cobalt (II) and copper (II) complexes of H2L and H2L...NaClhave a metal-ligand ratio of 1 : 2 and the ligand coordinatesthrough the two N atoms, as do most of the vic-dioximes. Their IR spectra and elemental analyses are given, together with1H NMR spectra of the ligands.  相似文献   

9.
Two new terbium complexes with aromatic carboxylic acids, [(Tb)2(L1)6(H2O)4] (1) and [(Tb)2(L2)6(H2O)2(DMF)2] (2) (HL1: nicotinic acid; HL2: 4-hydroxybenzoic acid), with different coordination geometries have been synthesized and their crystal structures determined. The luminescence properties of the two complexes, including the phosphorescence lifetime, have been investigated. The effect of a secondary ligand on luminescence of the ternary terbium complex with carboxylic acid and the relationship between luminescence properties and crystal structure, including coordination mode of the carboxyl groups from HL1 and HL2 and coordination mode of a secondary ligand, are discussed.  相似文献   

10.
Some new Schiff bases derivates from 2-furaldehyde and phenylenediamines (L1-3) and their complexes with lanthanum (La), samarium (Sm), gadolinium (Gd) and erbium (Er) have been synthesized. These complexes with general formula [Ln(L1-3)2(NO3)2]NO3·nH2O (Ln = La, Sm, Gd, Er) were characterized by elemental analysis, UV-Vis, FT-IR and fluorescence spectroscopy, molar conductivity and thermal analysis. The metallic ions were found to be eight coordinated. The emission spectra of these complexes indicate the typical luminescence characteristics of the Sm(III), La(III), Er(III) and Gd(III) ions.  相似文献   

11.
N′-(4′-Benzo[15-crown-5]naphthylaminoglyoxime (H2L) and its sodium chloride complex (H2L·NaCl) have been prepared from 2-naphthylchloroglyoxime, 4′-aminobenzo[15-crown-5] and sodium bicarbonate or sodium bicarbonate and sodium chloride. Nickel(II), cobalt(II) and copper(II) complexes of H2L and H2L·NaCl have a metal–ligand ratio of 1:2 and the ligand coordinates through the two N atoms, as do most of the vic-dioximes. The BF 2 + -capped Ni(II), Co(III) and mononuclear complexes of thevic-dioxime were prepared. The macrocyclic ligands and their transition metal complexes have been characterized on the basis of IR, 1H NMR spectroscopy and elemental analyses data.  相似文献   

12.
A series of molecular homo and heteroleptic zinc and magnesium compounds with aminophenolate ligands [(µ,η2-L2)ZnEt]2 ( 1 ), [(η2-L2)Zn(µ-BnO)]2 ( 2 ), [Zn(η2-L2)2] ( 3 ), [Zn(η2-L3)2] ( 4 ), [Mg(η2-L3)2] ( 5 ) (L2-H = N-[methylene(2-hydroxy-3,5-di-tert-butylphenyl)]-N-methyl-N-cyclohexylamine, L3-H = N-[methylene(2-hydroxy-3,5-di-tert-butylphenyl)]-N-methyl-N-methyl-1,3-dioxolaneamine) have been prepared and characterized. The homoleptic complexes 3–5 are most probably a mixture of diastereoisomers that in solution show an interesting dynamics which plays an important role in their catalytic behavior. The complexes 2 – 5 are efficient initiators in ring-opening polymerization (ROP) of lactides to produce polymers with desired molecular weight and narrow polydispersity.  相似文献   

13.
N′-(4′-Benzo[15-crown-5]naphthylaminoglyoxime (H2L) and its sodium chloride complex (H2L·NaCl) have been prepared from 2-naphthylchloroglyoxime, 4′-aminobenzo[15-crown-5] and sodium bicarbonate or sodium bicarbonate and sodium chloride. Nickel(II), cobalt(II) and copper(II) complexes of H2L and H2L·NaCl have a metal–ligand ratio of 1:2 and the ligand coordinates through the two N atoms, as do most of the vic-dioximes. The BF2+-capped Ni(II), Co(III) and mononuclear complexes of thevic-dioxime were prepared. The macrocyclic ligands and their transition metal complexes have been characterized on the basis of IR, 1H NMR spectroscopy and elemental analyses data.  相似文献   

14.
Three heterotopic ligands L1, L2, and L3 based on 1,10-phenanthroline and 2,2′-bipyridine moieties have been synthesized and characterized. The Ru(II) complexes [{Ru(bpy)2}33-L1)](PF6)6, [{Ru(bpy)2}33-L2)](PF6)6, and [{Ru(bpy)2}22-L3)](PF6)4 (bpy = 2,2′-bipyridine) have been prepared by refluxing Ru(bpy)2Cl2·2H2O with each ligand in ethanol. All three complexes display MLCT absorptions at around 455 nm and emissions at around 618 nm. Electrochemical studies of the complexes reveal one Ru(II)-centered quasi-reversible oxidation at around 1.32 V and three ligand-centered reductions in each case.  相似文献   

15.
A structural study of lanthanide complexes with the deprotonated form of the monobracchial lariat ether N-2-salicylaldiminatobenzyl-aza-18-crown-6 (L4) (Ln = La(III)–Tb(III)) is presented. Attempts to isolate complexes of the heaviest members of the lanthanide series were unsuccessful. The X-ray crystal structures of [Pr(L4)(H2O)](ClO4)2 · H2O · C3H8O and [Sm(L4)(H2O)](ClO4)2 · C3H8O show the metal ion being bound to the eight donor atoms of the ligand backbone. Coordination number nine is completed by the oxygen atom of an inner-sphere water molecule. Two different conformations of the crown moiety (labelled as A and B) are observed in the solid state structure of the Pr(III) complex, while for the Sm(III) complex only conformation A is observed. The complexes were also characterized by means of theoretical calculations performed in vacuo at the HF level, by using the 3-21G basis set for the ligand atoms and a 46 + 4fn effective core potential for lanthanides. The optimized geometries of the Pr(III) and Sm(III) complexes show an excellent agreement with the experimental structures obtained from X-ray diffraction studies. The calculated relative energies of the A and B conformations for the different [Ln(L4)(H2O)]2+ complexes (Ln = La, Pr, Sm, Ho or Lu) indicate a progressive stabilization of the A conformation with respect to the B one upon decreasing the ionic radius of the Ln(III) ion. For the [Ln(L4)(H2O)]2+ systems, most of the calculated bond distances between the metal ion and the coordinated donor atoms decrease along the lanthanide series, as usually observed for Ln(III) complexes. However, our ab initio calculations provide geometries in which the Ln–O(5) bond distance [O(5) is an oxygen atom of the crown moiety] increases across the lanthanide series from Sm(III) to Lu(III).  相似文献   

16.
Reaction of [Pt(DMSO)2Cl2] or [Pd(MeCN)2Cl2] with the electron-rich LH=N,N’-bis(4-dimethylaminophenyl)ethanimidamide yielded mononuclear [PtL2] ( 1 ) but dinuclear [Pd2L4] ( 2 ), a paddle-wheel complex. The neutral compounds were characterized through experiments (crystal structures, electrochemistry, UV-vis-NIR spectroscopy, magnetic resonance) and TD-DFT calculations as metal(II) species with noninnocent ligands L. The reversibly accessible cations [PtL2]+ and [Pd2L4]+ were also studied, the latter as [Pd2L4][B{3,5-(CF3)2C6H3}4] single crystals. Experimental and computational investigations were directed at the elucidation of the electronic structures, establishing the correct oxidation states within the alternatives [PtII(L)2] or [Pt.(L )2], [PtII(L0.5−)2]+ or [PtIII(L)2]+, [(PdII)2(μ-L)4] or [(Pd1.5)2(μ-L0.75−)4], and [(Pd2.5)2(μ-L)4]+ or [(PdII)2(μ-L0.75−)4]+. In each case, the first alternative was shown to be most appropriate. Remarkable results include the preference of platinum for mononuclear planar [PtL2] with an N-Pt-N bite angle of 62.8(2)° in contrast to [Pd2L4], and the dimetal (Pd24+→Pd25+) instead of ligand (L→L ) oxidation of the dinuclear palladium compound.  相似文献   

17.
Sodium and potassium complexes with 4′-(4‴-benzo-15-crown-5)methyloxy-2,2′:6′,2″-terpyridine (L1) and 4′-(4′-benzo-15-crown-5)oxy-2,2′:6′,2″-terpyridine (L2) and heteronuclear Na, K, Ca, and transition metal complexes with L1 were synthesized. The structure of the complexes was proposed on the basis of elemental analysis data, IR spectra, and the results of earlier X-ray diffraction studies of L2, [NaL1NCS], and [Na2{Cu(L1)2}(NCS)3]NCS · CH3CN.  相似文献   

18.
Three novel lanthanide complexes with the ligand 4,4-difluoro-1-(1,5-dimethyl-1H-pyrazol-4-yl)butane-1,3-dione (HL), namely [LnL3(H2O)2], Ln = Eu, Gd and Tb, were synthesized, and, according to single-crystal X-ray diffraction, are isostructural. The photoluminescent properties of these compounds, as well as of three series of mixed metal complexes [EuxTb1-xL3(H2O)2] (EuxTb1-xL3), [EuxGd1-xL3(H2O)2] (EuxGd1-xL3), and [GdxTb1-xL3(H2O)2] (GdxTb1-xL3), were studied. The EuxTb1-xL3 complexes exhibit the simultaneous emission of both Eu3+ and Tb3+ ions, and the luminescence color rapidly changes from green to red upon introducing even a small fraction of Eu3+. A detailed analysis of the luminescence decay made it possible to determine the observed radiative lifetimes of Tb3+ and Eu3+ and estimate the rate of excitation energy transfer between these ions. For this task, a simple approximation function was proposed. The values of the energy transfer rates determined independently from the luminescence decays of terbium(III) and europium(III) ions show a good correlation.  相似文献   

19.

Abstract  

New ternary complexes of Mn(II) with py, bipy, and terpy as primary ligand (L1) and 2′,4′,5′,7′-tetraiodofluorescein (I4FlCOOH) as secondary ligand (L2) were prepared. The stoichiometry for these complexes was found to be Mn(II):L1:L2 = 1:2:1, and the complex formula proposed is [Mn(L1)2(I4FlCOO)]+. The effect of substituent groups of L2 and the nitrogen atoms of L1 on complex formation with Mn(II) was studied. Moreover, the interference of some cations and anions in the determination of Mn(II) by this method was investigated and the interferences of Cu(II) and Fe(III) with Mn(II) in their corresponding alloys were considered. A simple, rapid, and sensitive spectrophotometric method for determination of Mn(II) in its salts and Mn in its alloys is suggested.  相似文献   

20.
Two novel macrocyclic chelators L1 and L2 incorporating an intracyclic pyridine or 2,2′-bipyridine unit and a triethylenetetraminetetraacetic acid core (TTTA) were synthesized with the aim of forming lanthanide complexes suitable as efficient long-lived luminophores. For this goal, an efficient methodology for the preparation of TTTA derivatives using prealkylated precursors is described. Starting from commercially available compounds, the target ligands were obtained in seven (L1) and nine (L2) steps in 40% and 20% overall yields, respectively. Stable Tb(III) complexes were prepared and displayed interesting luminescence properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号