首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 在2 MeV直线感应加速器注入器平台上研究了采用浸渍涂覆方法制备的大面积碳纳米管阴极发射体的强流发射特性。研究结果表明:在脉冲高压电场下,碳纳米管阴极具有强流电子束发射能力,发射电流密度较大;碳纳米管阴极发射电子过程为场致等离子体发射。实验过程中,阴极端取样电阻环收集到的最大发射电流达350 A,阳极端法拉第筒收集的发射电流为167 A,最大阴极发射电流密度为19.4 A/cm2。  相似文献   

2.
Field emission characteristic of screen-printed carbon nanotube cathode   总被引:5,自引:0,他引:5  
The fabrication of carbon nanotube emitters with excellent emission properties is described. The multi-walled carbon nanotubes (MWNTs) produced by chemical vapor deposition (CVD) method were purified with oxidation method and mixed with organic binding pastes and then screen-printed on glass substrates with ITO film. We applied anode voltage gradually to refine the emission behavior of the emitter by cleaning the top surface of screen-printed carbon nanotubes (CNTs). The density of the carbon nanotubes is about 2.5×108/cm2. Diode field emission experiments were performed in dynamic vacuum system to study the emission current, the emission uniformity, etc. Bright and stable character emission images were obtained in the diode structure and the emission current could approach 1 mA/cm2.  相似文献   

3.
Field emission properties of carbon nanotube field emission cathodes (CNT-FECs) produced using composite plating are studied. The experiment uses a CNT suspension and electroless Ni plating bath to carry out composite plating. The CNTs were first purified by an acid solution, dispersed in a Ni electrobath, and finally co-deposited with Ni on glass substrates to synthesize electrically conductive films. Field emission scanning electron microscopy and Raman spectroscopy results show that the field emission characteristics and graphitic properties of CNT-FECs depend on the pH value of the electrobath. Experiments show that the optimum electrobath pH value is 5.4, achieving a field emission current density of 1.0 mA/cm2 at an applied electric field of 1.5 V/μm. The proposed CNT-FECs possess good field emission characteristics and have potential for backlight unit application in liquid crystal displays.  相似文献   

4.
Interference fringes are obtained in a field-emission microscopy (FEM) study of a multi-walled carbon nanotube (MWCNT) with two open-ended branches. The FEM pattern, which is composed of three parallel streaks, can be interpreted by using classical Young's double-slit interference with the ends of the two MWCNT branches treated as two secondary sources of the electron wave. The origin of the coherency of the electron beams from the two branches is discussed on the basis of the quantitative analysis of the FEM pattern. The result suggests a new approach to obtaining a coherent electron source.  相似文献   

5.
Titanium buffer layer for improved field emission of CNT based cold cathode   总被引:2,自引:0,他引:2  
Carbon nanotube (CNT) based cold cathodes are considered to be the most promising material for fabrication of next generation high-performance flat panel displays and vacuum microelectronic devices. Adhesion of CNTs with the substrate and the contact resistance between them are two of the important issues to be addressed in CNT based field emission (FE) devices. Here in this work, a buffer layer of titanium (Ti) is deposited prior to the catalyst deposition and the growth was carried out using chemical vapor deposition (CVD) technique. There was significant increase in emission current density from 10 mA/cm2 to 30 mA/cm2 at the field of 4 V/μm by the use of titanium buffer layer due to much less dense growth of CNTs of smaller diameter. Field emission results suggest that the adhesion of the CNTs to the substrate has improved. The titanium buffer layer has also lowered the contact resistance between the CNTs and the substrate because of which a stable emission of 30 mA for a longer duration was obtained.  相似文献   

6.
王新庆  李良  褚宁杰  金红晓  葛洪良 《物理学报》2008,57(11):7173-7177
以纳米碳管阵列为研究对象,利用镜像悬浮球模型及Fowler-Nordheim电流密度公式,对纳米碳管阵列的场发射电流密度进行计算,进而综合考虑场发射增强因子及场发射电流密度对纳米碳管阵列场发射性能进行定量优化.参考碳管阵列场发射电流密度最大值及场发射增强因子,表明当纳米碳管阵列间距为碳管高度十分之一时,纳米碳管阵列的场发射性能得到优化.与以前的理论估算结果相比,优化的阵列间距进一步减小.当纳米碳管间距过大,场发射增强因子增加,而场发射电流密度会在更大程度上减小;当纳米碳管密度较大时,场发射增强因子受到静电关键词:纳米碳管场发射增强因子电流密度  相似文献   

7.
靳磊  付宏刚  谢颖  于海涛 《中国物理 B》2012,21(5):57901-057901
The electronic structures and field emission properties of capped CNT55 systems with or without alkali metal atom adsorption were systematically investigated by density functional theory calculation.The results indicate that the adsorption of alkali metal on the center site of a CNT tip is energetically favorable.In addition,the adsorption energies increase with the introduction of the electric field.The excessive negative charges on CNT tips make electron emittance much easier and result in a decrease in work function.Furthermore,the inducing effect by positively charged alkali metal atoms can be reasonably considered as the dominant reason for the improvement in field emission properties.  相似文献   

8.
碳纳米管场致电子发射新机制   总被引:1,自引:0,他引:1  
李志兵  许宁生  邓少芝  郑晓  陈冠华 《物理》2004,33(10):705-707
基于对长达 1μm的 (5 ,5 )碳纳米管的量子力学计算 ,作者发现使碳纳米管具有优异场致电子发射特性的因素除了人们预期的尖端场增强之外 ,电荷在纳米管尖端的积累造成有效功函数 (真空势垒 )的非线性下降也起了非常重要的作用 .对外加电场Vappl=10— 14V/ μm下的碳纳米管进行了计算 ,得到与实验结果相近的发射电流  相似文献   

9.
针对碳纳米管场致发射冷阴极在微波、毫米波电真空辐射源器件中的应用需求,采用2μs,20 kV的脉冲高压对碳纳米管场致发射冷阴极的脉冲发射特性进行了实验研究.通过改变阴阳极间距,对碳纳米管冷阴极发射电流特性及发生脉冲高压打火后的碳纳米管冷阴极发射特性进行了测试研究.在直径为4 mm的圆形平面碳纳米管冷阴极上获得最大发射电流16 mA,电流密度为127 mA/cm~2.以实验测试数据为基础,结合粒子模拟软件建立碳纳米管冷阴极场致发射仿真模型,给出了该仿真模型的相关参数,为下一步设计研制碳纳米管冷阴极电子光学系统及相关辐射源器件奠定基础.  相似文献   

10.
Selective plasma etching and hydrogen plasma treatment were introduced in turn to improve field emission characteristics of screen-printed carbon nanotubes (CNTs) cold cathode, which was prepared by using slurry of mixture of multi-wall CNTs, organic vehicles and inorganic binder, i.e. silicon dioxide sol. The results show that selective plasma etching process could effectively remove parts of surface inorganic vehicle (SiO2) layer and expose more smooth and clean CNTs on cathode surface, which could significantly decrease the operating field of CNTs cathode. There are some nanoparticles emerging on the out of CNTs wall after hydrogen plasma treatment, which are equivalent to increase field emission point of cathode. At the same time, these nanoparticles can increase the local electric field of CNTs, which can decrease operating voltage of CNTs cathode and improve uniformity field emission.  相似文献   

11.
建立一种平行背栅极碳纳米管阵列阴极,基于电场叠加原理,利用镜像电荷法对其进行计算,给出碳纳米管顶端表面电场增强因子。在此基础上,进一步分析器件各类参数对电场增强因子的影响。分析表明,碳纳米管阵列阴极具有最佳阵列密度,其对应碳纳米管间距大约为碳纳米管高度的两倍,靠阴极阵列边缘部位的碳纳米管发射电子能力比其中心部位的大。除了碳纳米管的长径比之外,栅极宽度、栅极厚度和栅极间距等也对电场增强因子有一定的影响:栅极越宽,场增强因子越大;而栅极厚度、栅极间距越大,场增强因子就越小。  相似文献   

12.
Field electron emission (FE) is a quantum tunneling process in which electrons are injected from materials (usually metals) into a vacuum under the influence of an applied electric field. In order to obtain usable electron current, the conventional way is to increase the local field at the surface of an emitter. For a plane metal emitter with a typical work function of 5 eV, an applied field of over 1 000 V/μm is needed to obtain a significant current. The high working field (and/or the voltage between the electrodes) has been the bottleneck for many applications of the FE technique. Since the 1960s, enormous effort has been devoted to reduce the working macroscopic field (voltage). A widely adopted idea is to sharpen the emitters to get a large surface field enhancement. The materials of emitters should have good electronic conductivity, high melting points, good chemical inertness, and high mechanical stiffness. Carbon nanotubes (CNTs) are built with such needed properties. As a quasi-one-dimensional material, the CNT is expected to have a large surface field enhancement factor. The experiments have proved the excellent FE performance of CNTs. The turn-on field (the macroscopic field for obtaining a density of 10 μA/cm2) of CNT based emitters can be as low as 1 V/μm. However, this turn-on field is too good to be explained by conventional theory. There are other observations, such as the non-linear Fowler-Nordheim plot and multi-peaks field emission energy distribution spectra, indicating that the field enhancement is not the only story in the FE of CNTs. Since the discovery of CNTs, people have employed more serious quantum mechanical methods, including the electronic band theory, tight-binding theory, scattering theory and density function theory, to investigate FE of CNTs. A few theoretical models have been developed at the same time. The multi-walled carbon nanotubes (MWCNTs) should be assembled with a sharp metal needle of nano-scale radius, for which the FE mechanism is more or less clear. Although MWCNTs are more common in present FE applications, the single-walled carbon nanotubes (SWCNTs) are more interesting in the theoretical point of view since the SWCNTs have unique atomic structures and electronic properties. It would be very interesting if people can predict the behavior of the well-defined SWCNTs quantitatively (for MWCNTs, this is currently impossible). The FE as a tunneling process is sensitive to the apex-vacuum potential barrier of CNTs. On the other hand, the barrier could be significantly altered by the redistribution of excessive charges in the micrometer long SWCNTs, which have only one layer of carbon atoms. Therefore, the conventional theories based upon the hypothesis of fixed potential (work function) would not be valid in this quasi-one-dimensional system. In this review, we shall focus on the mechanism that would be responsible for the superior field emission characteristics of CNTs. We shall introduce a multi-scale simulation algorithm that deals with the entire carbon nanotube as well as the substrate as a whole. The simulation for (5, 5) capped SWCNTs with lengths in the order of micrometers is given as an example. The results show that the field dependence of the apex-vacuum electron potential barrier of a long carbon nanotube is a more pronounced effect, besides the local field enhancement phenomenon.  相似文献   

13.
We present a study of the field emission properties of a mixture of multi-wall carbon nanotubes (MWCNTs) and tetrapod-like zinc oxide nanostructures (ZTPNs). A spin-coating process instead of screen-printing was used to fabricate the cathode; this prevented largely the destruction of the slim needles of ZTPNs by mechanical rubbing. The protruding needles of ZTPNs in the paste are largely responsible for the field emission, while the CNTs have been added to improve the conductivity of cathode. Ultra low turn-on field at 0.6 V/μm and threshold field at 1.5 V/μm were obtained; moreover, the emission uniformity improved substantially compared to unmixed samples of ZTPN.  相似文献   

14.
The field emission characteristics of carbon nanotubes (CNTs) grown by thermal chemical vapor deposition (CVD) and subsequently surface treated by high-density Ar plasma in an inductively coupled plasma reactive ion etching (ICP-RIE) with the various plasma powers were measured. Results indicate that, after treated by Ar plasma with power between 250 and 500 W, the emission current density of the CNTs is enhanced by nearly two orders of magnitude (increased from 0.65 to 48 mA/cm2) as compared to that of the as-grown ones. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to investigate the structural features relevant to the modified field emission properties of CNTs. The SEM images of CNTs subjected to a 500 W Ar plasma treatment exhibit obvious damages to the CNTs. Nevertheless, the turn-on fields decreased from 3.6 to 2.2 V/μm, indicating a remarkable field emission enhancement. Our results further suggest that the primary effect of Ar plasma treatment might be to modify the geometrical structures of the local emission region in CNTs. In any case, the Ar plasma treatment appears to be an efficient method to enhance the site density for electron emission and, hence markedly improving the electric characteristics of the CNTs.  相似文献   

15.
涂布法制备碳纳米管场发射阴极及其性能的研究   总被引:6,自引:0,他引:6  
碳纳米管(CNT)作为场发射阴极(FEC)具有很好的性能。报导了利用粉末状碳纳米管制作CNT-FEC的方法,包括涂布方法、纯化方法和表面处理方法。主要关心的FEC性能为电子发射均匀性、电流密度和寿命。  相似文献   

16.
纳米碳管阵列场增强因子的计算   总被引:2,自引:0,他引:2  
采用悬浮球模型,结合对称的镜像电荷层方法,对静电场中纳米碳管阵列的场增强因子进行了计算,并在考虑极板间距的情况下,对其计算结果做了修正.结果表明:纳米碳管阵列的间距对纳米碳管阵列的场发射性能影响很大.当纳米碳管阵列中碳管间距小于碳管高度时,场增强因子随间距的减小而急剧减小;而当碳管间距显著大于碳管高度时,场增强因子几乎不变.但当考虑阴阳极之间单位面积通过的场发射电流时,可论证当管间距与管高度相若时,能使场发射电流密度最佳(最大).另外,极板间距对场增强因子的影响很小,但是可以通过减小极板间距,来降低纳米碳管作为场发射体的场发射的开启电压,优化纳米碳管的场发射性能.关键词:纳米碳管阵列场增强因子开启电压  相似文献   

17.
Modeling and simulation for the field emission of carbon nanotubes array   总被引:3,自引:0,他引:3  
To optimize the field emission of the infinite carbon nanotubes (CNTs) array on a planar cathode surface, the numerical simulation for the behavior of field emission with finite difference method was proposed. By solving the Laplace equation with computer, the influence of the intertube distance, the anode–cathode distance and the opened/capped CNT on the field emission of CNTs array were taken into account, and the results could accord well with the experiments. The simulated results proved that the field enhancement factor of individual CNT is largest, but the emission current density is little. Due to the enhanced screening of the electric field, the enhancement factor of CNTs array decreases with decreasing the intertube distance. From the simulation the field emission can be optimized when the intertube distance is close to the tube height. The anode–cathode distance hardly influences the field enhancement factor of CNTs array, but can low the threshold voltage by decreasing the anode–cathode distance. Finally, the distribution of potential of the capped CNTs array and the opened CNTs array was simulated, which the results showed that the distribution of potential can be influenced to some extent by the anode–cathode distance, especially at the apex of the capped CNTs array and the brim of the opened CNTs array. The opened CNTs array has larger field enhancement factor and can emit more current than the capped one.  相似文献   

18.
Electron emission properties of single-walled carbon nanotubes (SWCNTs) assembled on a tungsten tip were investigated using field emission microscopy (FEM). The transmission electron microscopy (TEM) micrograph confirmed the existence of an SWCNT bundle on the W tip. Under appropriate experimental conditions,a series of FEM patterns with atomic resolution were obtained. These patterns arose possibly from the field emission of the open end of an individual (16,0) SWCNT protruding from the SWCNT bundle. The magnification factor and the resolution under our experimental conditions were calculated theoretically. If the value of the compression factor β was set at β= 1.76, the calculated value of the magnification factor was in agreement with the measured value. The resolving powerof FEM was determined by the resolution equation given by Gomer. The resolutionof 0.277 nm could be achieved under the typical electric field of 5.0×107 V/cm, which was close to the interatomic separation 0.246 nm between carbon atoms along the zigzag edge at the open end for the (16, 0) SWCNT. Consequently, our experimental results were further supported by our theoretical calculation.  相似文献   

19.
马玉龙  向伟  金大志  陈磊  姚泽恩  王琦龙 《物理学报》2016,65(9):97901-097901
在超高真空系统中对基于丝网印刷方法制备的碳纳米管薄膜的场蒸发效应进行实验研究. 实验发现, 碳纳米管薄膜样品存在场蒸发现象, 蒸发阈值场在10.0-12.6 V/nm之间, 蒸发离子流可以达到百皮安量级; 扫描电子显微镜分析和场致电子发射测量结果表明, 场蒸发会使碳纳米管分布变得更加不均匀, 会导致薄膜的场致电子发射开启电压上升(240→300V)、场增强因子下降(8300→4200)、蒸发阈值场上升(10→12.6V/nm), 同时使得薄膜场致电子发射的可重复性明显变好. 场蒸发也是薄膜自身电场一致性修复的表现, 这种修复并非表现在形貌上, 而是不同区域场增强因子之间的差距会越来越小, 这样薄膜场致电子发射的可重复性和稳定性自然会得到改善.  相似文献   

20.
In the conventional carbon nanotube backlight units (CNT-BLUs), light passes through the phosphor-coated anode glass plate, which thus faces closely the thin film transistor (TFT) backplate of a liquid crystal display panel. This configuration makes heat dissipation structurally difficult because light emission and heat generation occur simultaneously at the anode. We propose a novel configuration of a CNT-BLU where the cathode rather than the anode faces the TFT backplate by turning it upside down. In this design, light passes through the transparent cathode glass plate while heating occurs at the anode. We demonstrated a novel design of CNT-BLU by fabricating transparent single-walled CNT field emitters on the cathode and by coating a reflecting metal layer on the anode. This study hopefully provides a clue to solve the anode-heating problem which would be inevitably confronted for high-luminance and large-area CNT-BLUs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号