首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The objective of the present study was to prepare clarithromycin (CLR) loaded biodegradable nanoparticles (NPS), with a view to investigate its physicochemical properties and anti-bacterial activity. PLGA was used as a biodegradable polymer and the particles were prepared by nano-precipitation method in 3 different drugs to polymer ratios. Evaluation of the physicochemical properties of the prepared nanoparticles was performed using encapsulation efficiency, nanoparticle production yield, dissolution studies, particle size analysis, zeta potential determination, differential scanning calorimetry, Fourier-transform infrared spectroscopy and X-ray powder diffractometry. The antimicrobial activity against Staphylococcus aureus was determined using serial dilution technique to achieve the minimum inhibitory concentration (MIC) of NPs. The particles were between 189 and 280 nm in size with narrow size distribution, spherical shape and 57.4-80.2% entrapment efficiency. Zeta potential of the NPs was fairly negative. The DSC thermograms and X-ray diffraction patterns revealed reduced drug crystallinity in the NPs. FT-IR spectroscopy demonstrated possible noncovalent interactions between the drug and polymer. In vitro release study showed an initial burst followed by a plateau during a period of 24 h. The NPs were more effective than intact CLR against S. aureus so that the former showed equal antibacterial effect at 1/8 concentration of the intact drug. In conclusion, the prepared CLR nanoparticles are more potent against S. aureus with improved MICs and appropriate physicochemical properties that may be useful for other susceptible microorganisms and could be an appropriate candidate for intravenous, ocular and oral and topical preparations.  相似文献   

3.
It is known that cyclodextrins (CDs) extract lipid components from bilayer of liposomes. This could undermine the potential benefits of liposomes as drug carriers. In this study, we demonstrated that PC-Chol liposomes with various CDs or rhapontin (Rh)-hydroxypropyl betaCD (HPbetaCD) complexes could be stabilized by association with the amphiphilic polyelectrolyte, poly(methacrylic acid-co-stearyl methacrylate). Based on the results of differential scanning calorimetry, photocorrelation spectroscopy and transmission electron microscopy, the polymer-associated liposomes had the same vesicular form as liposome with clear boundaries and retained structural integrity for at least 1 month. In addition, the polymer-associated structure was unaffected by the type of CD, the composition and concentration of lipid components, and the concentration of the Rh-HPbetaCD complex. This contrasted with PC-Chol liposomes, whose structure was dependent on these factors. Using structurally different polymer-associated liposomes and PC-Chol liposomes containing the Rh-HPbetaCD complex, we also showed that the stability of vesicles could influence the skin permeability of CD-drug complexes.  相似文献   

4.
A hyperbranched aliphatic polyester has been functionalized with PEG chains to afford a novel water-soluble BH40-PEG polymer which exhibits unimolecular micellar properties, and is therefore appropriate for application as a drug-delivery system. The solubility of the anticancer drug paclitaxel was enhanced by a factor of 35, 110, 230, and 355 in aqueous solutions of BH40-PEG of 10, 30, 60, and 90 mg x mL(-1), respectively. More than 50% of the drug is released at a steady rate and release is almost complete within 10 h. The toxicity of BH40-PEG was assessed in vitro with A549 human lung carcinoma cells and found to be nontoxic for 3 h incubation up to a 1.75 mg x mL(-1) concentration while LD50 was 3.5 mg x mL(-1). Finally, it was efficiently internalized in cells, primarily in the absence of foetal bovine serum, while confocal microscopy revealed the preferential localization of the compound in cell nuclei. [Figure: see text].  相似文献   

5.
6.
The ability of nanoparticles to manipulate the molecules and their structures has revolutionized the conventional drug delivery system. The chitosan nanoparticles, because of their biodegradability, biocompatibility, better stability, low toxicity, simple and mild preparation methods, offer a valuable tool to novel drug delivery systems in the present scenario. Besides ionotropic gelation method, other methods such as microemulsion method, emulsification solvent diffusion method, polyelectrolyte complex method, emulsification cross-linking method, complex coacervation method and solvent evaporation method are also in use. The chitosan nanoparticles have also been reported to have key applications in parentral drug delivery, per-oral administration of drugs, in non-viral gene delivery, in vaccine delivery, in ocular drug delivery, in electrodeposition, in brain targeting drug delivery, in stability improvement, in mucosal drug delivery in controlled drug delivery of drugs, in tissue engineering and in the effective delivery of insulin. The present review describes origin and properties of chitosan and its nanoparticles along with the different methods of its preparation and the various areas of novel drug delivery where it has got its application.  相似文献   

7.
Biodegradable poly(d,l-lactide-co-glycolide) (PLGA) and bioactive hydroxyapatite (HAp) are selected for the formation of a multifunctional system with the specific core-shell structure to be applied as a carrier of a drug. As a result, both components of PLGA/HAp core-shells are able to capture one part of the drug. Polymeric shells consisting of small nanospheres up to 20nm in size act as a matrix in which one part of the drug is dispersed. In the same time, ceramic cores are formed of rod-like hydroxyapatite particles at the surface of which another part of the drug is adsorbed onto the interface between the polymer and the ceramics. The content of the loaded drug, as well as the selected solvent/non-solvent system, have a crucial influence on the resulting PLGA/HAp morphology and, finally, unimodal distribution of core-shells is obtained. The redistribution of the drug between the organic and inorganic parts of the material is expected to provide an interesting contribution to the kinetics of the drug release resulting in non-typical two-step drug release.  相似文献   

8.
Multiparticulate chitosan-dispersed system for drug delivery   总被引:6,自引:0,他引:6  
A multiparticulate chitosan-dispersed system (CDS), which is composed of the drug reservoir and the drug release-regulating layer, was developed for drug delivery. The drug release-regulating layer is a mixture of water-insoluble polymer and chitosan powder. The drug is released from CDS pellets in all regions of the gastrointestinal tract (from the stomach to the colon). CDS pellets containing chitosan powder were designed to dissolve chitosan powder partly in the release-regulating layer in the stomach and release part of drug. After passing through the stomach, the drug is released from CDS pellets at a constant speed in the small intestine. In the large intestine, CDS pellets were designed to disintegrate the remaining chitosan powder at an accelerated speed and the remaining drug in CDS pellets is released. The drug release rate can be controlled with the thickness of the chitosan-dispersed water-insoluble layer. Furthermore, for colon-specific drug delivery, an additional outer enteric coating is necessary to prevent drug release from CDS pellets in the stomach, because the chitosan-dispersed water-insoluble layer dissolves gradually under acidic conditions. The resulting enteric-coated CDS (E-CDS) pellets were found to permit colon-specific drug delivery. In this study, the multiparticulate CDS was adopted not only for colon-specific drug delivery but also for sustained drug release.  相似文献   

9.
Fine D  Grattoni A  Zabre E  Hussein F  Ferrari M  Liu X 《Lab on a chip》2011,11(15):2526-2534
Recent work has elucidated the potential of important new therapeutic paradigms, including metronomic delivery and chronotherapy, in which the precise timing and location of therapeutic administration has a significant impact on efficacy and toxicity. New drug delivery architectures are needed to not only release drug continuously at precise rates, but also synchronize their release with circadian cycles. We present an actively controlled nanofluidic membrane that exploits electrophoresis to control the magnitude, duration, and timing of drug release. The membrane, produced using high precision silicon fabrication techniques, has platinum electrodes integrated at the inlet and outlet that allow both amplification and reversal of analyte delivery with low applied voltage (at or below 2 VDC). Device operation was demonstrated with solutions of both fluorescein isothiocyanate conjugated bovine serum albumin and lysozyme using fluorescence spectroscopy, fluorescence microscopy, and a lysozyme specific bio-assay and has been characterized for long-term molecular release and release reversibility. Through a combination of theoretical and experimental analysis, the relative contributions of electrophoresis and electroosmosis have been investigated. The membrane's clinically relevant electrophoretic release rate at 2 VDC exceeds the passive release by nearly one order of magnitude, demonstrating the potential to realize the therapeutic paradigm goal.  相似文献   

10.
A new oral proteinoid microsphere drug delivery system is discussed with respect to its unique dependence on pH. Extensive evidence indicate that this technique not only can be used to deliver the protein and polar macromolecular drugs which are currently administered via injection, but also can be used to administer antigens and vaccines. Future work has been proposed to study the physical interaction of specific drugs with specifically designed oligopeptides structures.  相似文献   

11.
The purpose of this study was to develop a novel dual thermo- and pH-responsive silver nanocomposite hydrogel (SNH) for drug release applications. This smart SNH was prepared in a facile one-pot method by in situ reduction of silver ions in salep solution and then grafting of poly(vinylpyrrolidone-co-acrylic acid) onto it. The SNH was characterized by transmission electron microscopy (TEM), scanning electron microscopy with energy-dispersive X-ray analysis (SEM–EDAX), thermo-gravimetric analysis (TGA), Fourier transform infrared (FT-IR), UV–Vis spectroscopy, and cyclic voltammetry. The dependence of swelling properties of the prepared SNH on the reaction variables (such as monomer, Ag NO3, and cross-linker concentrations), temperature, pH, and salt was investigated. The potential of obtained SNH was examined for the deferasirox release from prepared hydrogel under different temperatures and pHs. The evaluation of release mechanism and determination of diffusion coefficients were also studied. In addition, SNH showed good antibacterial potentials. The results of this study provide valuable information regarding the development of dual stimuli-sensitive SNH for biomedical applications.  相似文献   

12.
Magnetic mesoporous carbonated hydroxyapatite microspheres have been fabricated hydrothermally by using CaCO(3)/Fe(3)O(4) microspheres as sacrificial templates. The high drug-loading capacity and sustained drug release property suggest that the multifunctional microspheres have great potentials for bone-implantable drug-delivery applications.  相似文献   

13.
Pluronics with different structural compositions and properties are used for several applications, including drug delivery systems. We developed a binary mixing system with two Pluronics, L121/P123, as a nano-sized drug delivery carrier. The lamellar-forming Pluronic L121 (0.1 wt%) was incorporated with Pluronic P123 to produce nano-sized dispersions (in case of 0.1 and 0.5 wt% P123) with high stability due to Pluronic P123 and high solubilization capacity due to Pluronic L121. The binary systems were spherical and less than 200-nm diameter, with high thermodynamic stability (at least 2 weeks) in aqueous solution. The CMC of the binary system was located in the middle of the CMC of each polymer. In particular, the solubilization capacity of the binary system (0.1/0.1 wt%) was higher than mono-systems of P123. The main advantage of binary systems is overcoming limitations of mono systems to allow tailored mixing of block copolymers with different physicochemical characteristics. These nano-sized systems may have potential as anticancer drug delivery systems with simple preparation method, high stability, and high loading capacity.  相似文献   

14.
This work investigated the application of a porous polyaniline (PANi) membrane as a conducting polymeric membrane as well as an electrode in an iontophoretic transdermal drug delivery (TDD) system. Model drugs studied were: caffeine (MW: 194.2), lidocaine HCl (MW: 270.8) and doxycycline HCl (MW: 480.1). The PANi membrane was first tested as a simple membrane between the donor and receptor solutions; it provided satisfactory permeation profiles; the observed flux values were well described by a simplified mass transport model. A mouse skin was then mounted beneath the PANi film; such a composite system also presented satisfactory permeation profiles. Iontophoretic TDD experiments were next performed using both Ag|AgCl electrodes and PANi|AgCl electrodes for comparison; a PANi anode replaced the Ag anode in the last set. For doxycycline HCl, the flux and the 24-h accumulation from the PANi|AgCl set were 94.4 ± 81.2 μg/cm2 h and 2760 ± 3980 μg/cm2, respectively; those from the Ag|AgCl set were zero. For lidocaine HCl, the flux and 10-h accumulation from the PANi|AgCl set were, respectively, 43 ± 15 μg/cm2 h and 392 ± 130 μg/cm2; the corresponding values from the Ag|AgCl set were 48 ± 20 μg/cm2 h and 348 ± 78 μg/cm2. Porous polyaniline membrane appears to be capable of replacing the Ag part of Ag|AgCl electrode system; further such a membrane can exercise additional control over agent transport rate. Aqueous-organic partitioning system through the porous membrane of PANi was tested with this novel technique as well. Because of the rather low porosity of the synthesized PANi film, such a system did not yield a high permeation rate.  相似文献   

15.
The synthesis of targetable conjugates of doxorubicin bound to N-(2-hydroxypropyl)methacrylamide copolymers was investigated. Anti-CD3 antibody against TCR/CD3 complex was used to target the conjugates to T-cells. The effect of structure of the oligopeptide spacer between the drug and polymer as well as of the polymer modification with the antibody on the rate of drug release from the polymeric carrier system incubated in vitro with cathepsin B or with a mixture of intracellular enzymes (tritosomes) is discussed. The results of in vitro drug-release experiments are correlated with the evaluation of T-cell cytotoxicity of targeted and nontargeted polymer-bound doxorubicin conjugates measured in vitro as the inhibition of Con-A stimulated growth of human peripheral blood lymphocytes (3H-thymidine incorporation method).  相似文献   

16.
The versatile pharmaceutical material cyclodextrin’s (CDs) are classified into hydrophilic, hydrophobic, and ionic derivatives. By the early 1950s the basic physicochemical characteristics of cyclodextrins had been discovered, since than their use is a practical and economical way to improve the physicochemical and pharmaceutical properties such as solubility, stability, and bioavailability of administered drug molecules. These CDs can serve as multi-functional drug carriers, through the formation of inclusion complex or the form of CD/drug conjugate and, thereby potentially serving as novel drug carriers. This contribution outlines applications and comparative benefits of use of cyclodextrins (CDs) and their derivatives in the design of novel delivery systems like liposomes, microspheres, microcapsules, nanoparticles, cyclodextrin grafted cellulosic fabric, hydrogels, nanosponges, beads, nanogels/nanoassemblies and cyclodextrin-containing polymers. The article also focuses on the ability of CDs to enhance the drug absorption across biological barriers, the ability to control the rate and time profiles of drug release, drug safety, drug stability, and the ability to deliver a drug to targeted site. The article highlight’s on needs, limitations and advantages of CD based delivery systems. CDs, because of their continuing ability to find several novel applications in drug delivery, are expected to solve many problems associated with the delivery of different novel drugs through different delivery routes.  相似文献   

17.
《中国化学快报》2023,34(1):107583
Chemotherapy is restricted by efficient drug outflow due to the multiple drug resistance (MDR) in heterogenous nature of tumor. Herein, we present a dual-responsive hyaluronic acid (HA) nanocomposite hydrogel that can not only response to the tumor microenvironment but also enhance chemotherapy. This HA hydrogel consists of a core-shell SiO2 (GOD@SiO2-Arg) and mesoporous silica nanoparticles (MSNs) with doxorubicin (DOX) as the cargo (DOX@MSN). It could rapidly release the GOD@SiO2-Arg nanoparticles at the low pH tumor-specific environment due to the cleavage of imine bond. GOD@SiO2-Arg activated by over-expressed glutathione (GSH) in tumor cells releases GOD due to the cleavage of disulfide bonds, which could oxidize glucose to produce hydrogen peroxide (H2O2) for in situ NO generation via reaction between Arg and H2O2. The validity of this study might provide a method to modulate the tumor microenvironment for enhancing chemotherapy.  相似文献   

18.
In this work, Fe3O4/poly(3-acrylamidephenylboronic acid-co-(2-dimethylamino) ethyl methacrylate) (Fe3O4/P(AAPBA-co-DMAEMA)) hydrogels possessing magnetic and triple-responsive properties and semi-interpenetrated by β-cyclodextrin-epichlorohydrin (β-CD-EPI) were prepared via radical polymerization. The characteristics of the materials have been investigated by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), vibrating sample magnetometer (VSM). The swelling measurements and the application of Fe3O4/P(AAPBA-co-DMAEMA)/(β-CD-EPI) hydrogels in controlled release of drug were also investigated. It was found that the magnetic hydrogels exhibit swelling behaviors affected by pH, temperature, glucose concentration and magnetic field, and have porous morphologies, superparamagnetism. Moreover, the hydrogels possess targeting and could control the release of quercetin by adjusting pH value, temperature, glucose concentration and magnetic field.  相似文献   

19.
A series of anionic liposaccharide derivatives were synthesized in order to develop a system, which would have the capacity to act as an absorption enhancer and to improve oral bioavailability of drugs. The addition of a liposaccharide to a drug enhances drug stability against enzymatic degradation, while the lipophilicity can be controlled by variation of the lipid side chain. All liposaccharide derivatives were purified and fully characterized by nuclear magnetic resonance and high-resolution mass spectrometry. The thermodynamic profiles, critical aggregation concentrations and size of the synthesized liposaccharides were determined by isothermal titration microcalorimetry, transmission electron microscopy and dynamic light scattering. These liposaccharides formed nanoparticles with sizes below 100 nm.  相似文献   

20.
Drug release mechanism from silicone carrier differs depending on physicochemical properties of the drug. So far, there have been few reports on controlled release of insoluble drug and on simultaneous release of two kinds of water-soluble drugs. The purposes of this study are to establish methods for (1). continuous release of insoluble drug, and (2). release of two kinds of water-soluble drugs from silicone carrier. Polystyrene beads (PSTB) and proteins such as interferon (IFN) and human serum albumin (HSA) were used as model drugs. PSTB was released from silicone only when citric acid (CA) and sodium bicarbonate (SB) existed as additives. The release patterns of IFN and HSA were almost same in the case of matrix and covered-rod formulations, but double-layered formulation released them in different patterns. As far as we are aware, this is the first report on the release of insoluble drug from silicone and the controlled release of two kinds of water-soluble drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号