首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Xu W  Xu JH  Pan J  Gu Q  Wu XY 《Organic letters》2006,8(8):1737-1740
[reaction: see text] Two novel epoxide hydrolases were discovered in mung bean (Phaseolus radiatus L.) for the first time, either of which can catalyze enantioconvergent hydrolysis of styrene epoxides. Their regioselectivity coefficients are more than 90% for the p-nitrostyrene oxide. Furthermore, the crude mung bean powder was also shown to be a cheap and practical biocatalyst, allowing a one-step asymmetric synthesis of chiral (R)-diols from racemic epoxides, in up to >99% ee and 68.7% overall yield (after recrystallization).  相似文献   

2.
Electron nuclear double resonance (ENDOR) spectroscopy was used to investigate the weak enantioselective binding between chiral salen complexes [VO(1)] ((R,R)- and (S,S)-vanadyl N,N'-bis(3,5-di-tert-butylsalcylidene)-1,2-cyclohexanediamine) and chiral epoxides (e.g., (R)-/(S)-propylene epoxide, 5) in frozen (10 K) solution. Differences in epoxide binding by enatiomers of [VO(1)] was evidenced by changes to the 1H epoxide derived peaks in the ENDOR spectra, such that (R,R)-[VO(1)] + (R)-5 and (R,R)-[VO(1)] + (S)-5 yield noticeably different spectra. These changes were assigned to the small structural differences between the diastereomeric metal-epoxide adducts. Simulation of the spectra revealed differences in the VO...1Hepoxide distances for the diastereomeric pairs, which was confirmed by a complementary set of density functional theory (DFT) calculations. While the epoxide molecule is very weakly coordinated, ENDOR measurements of the racemic complex in racemic epoxide nevertheless indicated the preferential coordination of the (R)-5 to (R,R)-[VO(1)] (likewise (S)-(5) to (S,S)-[VO(1)]), which is favored over the binding of (S)-5 epoxide to (R,R)-[VO(1)] (and likewise (R)-5 epoxide to (S,S)-[VO(1)]). This demonstrates the unique power of the ENDOR technique to resolve weak chiral interactions for which EPR spectroscopy alone lacks sufficient resolution.  相似文献   

3.
A new heterocyclic compound, C(2)-symmetric bis-sulfoxide 1, has been found to be an efficient chiral auxiliary for asymmetric desymmetrization of cyclic meso-1,2-diols via diastereoselective acetal fission. Both (R,R)- and (S,S)-1 are readily synthesized with high optical purity via asymmetric oxidation of 1, 5-benzodithiepan-3-one (2). After acetalization of meso-1,2-diols 6a-e and a mono-TMS ether 6f with this chiral auxiliary 1, the resulting acetals 7a-f were subjected to base-promoted acetal fission upon treatment with potassium hexamethyldisilazide (KHMDS) followed by acetylation or benzylation to give the desymmetrized diol derivatives 8a-f with high diastereoselectivity. The chiral auxiliary 1 is readily removed by acid-promoted hydrolysis and can be recovered without a loss in enantiomeric excess.  相似文献   

4.
对已公布的全基因组进行检索发现,杨树(Populus tomentosa)至少含有24个预测为可溶性环氧水解酶的基因.从中选取了7个可能的环氧水解酶基因进行克隆,通过扩增得到其中5个毛白杨(Populus tomentosa Carr)环氧水解酶基因.序列分析显示,它们与已克隆的巨大芽胞杆菌环氧水解酶的同源性仅为24%~26%.对该系列基因进行了在E.coli中的异源表达,并将得到的5个环氧水解酶(PTEH1~5)用于缩水甘油苯基醚和对硝基苯乙烯氧化物的酶促水解反应.结果发现,其中3个重组酶具有显著的环氧水解酶活性.进一步研究表明,PTEH1和PTEH2对于缩水甘油苯基醚显示了一定的反常规的(R)-选择性,而PTEH5则优先水解(S)-构型的缩水甘油苯基醚.因此,毛白杨中环氧水解酶表现出多样性.  相似文献   

5.
The stereodifferentiation of chiral secondary alcohols, 4(5)-alkyl-substituted γ (δ)-lactones via corresponding 1, 4(1, 5)-diols, chiral 1, 3-diols, and 1-thioalkan-3-ols was carried out by diastereomeric derivatization with (S)-O-acetyllactyl chloride as a chiral auxiliary. This procedure is a convenient and reliable method for screening the enantiomeric composition of these naturally occurring flavor volatiles.  相似文献   

6.
[structure: see text] Commercially available 2-methylenepropane-1,3-diol was converted to chiral epoxide (R)-2 via Sharpless asymmetric epoxidation in >96% ee. Regiospecific epoxide ring opening and reduction of the intermediate alkyne set the stage for a one-pot lactonization to give (R)-6, a convenient precursor for all functionalized chiral DAG-lactones used as potent PK-C ligands. The synthesis of the most potent DAG-lactones known to date, (Z)-10 and (E)-10, served to confirm PK-C's exclusive preference for the (R)-stereochemistry in this class of compounds.  相似文献   

7.
用新分离的巨大芽孢杆菌对映选择性水解缩水甘油苯基醚   总被引:1,自引:0,他引:1  
Microbial epoxide hydrolases from bacterial and fungal sources?1? are hi ghly versatile catalysts for the asymmetric hydrolysis of chiral epoxides which are extensively employed as useful building blocks for the synthesis of various biologically active products in the pharmaceutical and agrochemical industries. Microorganism means allows an unlimited supply of these enzymes for preparative -scale applications. Phenyl glycidyl ether (PGE), an aryl epoxide, is a potenti ally useful compound in the synthesis of chiral amino alcohols and bioactive com pounds such as ?blockers. No suitable biocatalyst with sufficiently high enan tioselectivity (E?20) for the kinetic resolution of this compound was previ ously found among bacteria and fungi. This prompted us to screen epoxide hydrola se-producing microorganisms with higher enantioselectivity toward phenyl glycid yl ether from soil samples.  相似文献   

8.
Two different chiral lithium amide base routes for the synthesis of amino- and aziridino-containing cyclohexenols have been explored. The first strategy involved the diastereoselective preparation of novel meso-aziridinocyclohexene oxides and their subsequent enantioselective rearrangement using chiral bases. In this approach, the diphenylphosphinoyl nitrogen protecting group proved optimal and aziridinocyclohexenols of 47-68% ee were obtained. Of particular note was the smooth rearrangement of the epoxide to an allylic alcohol in the presence of an aziridine: under optimised chiral base conditions, the aziridine remained essentially unaffected. A second more straightforward strategy for introduction of an amino functionality was also investigated: (1S,4R,5S)- and (1R,4R,5S)-4,5-bis(tert-butyldimethylsilyloxy)cyclohex-2-enols, readily prepared in > 95% ee using a chiral base approach, were subjected to Mitsunobu substitution using a sulfonamide and Overman rearrangement.  相似文献   

9.
The absolute configuration of 1,2-diols formed by a primary and a secondary (chiral) hydroxyl group can be deduced by comparison of the 1H NMR spectra of the corresponding (R)- and bis-(S)-MPA esters (MPA = methoxyphenylacetic acid). This method involves the use of the chemical shifts of substituents L1/L2 attached to the secondary (chiral) carbon, and of the hydrogen atom linked to the chiral center (C alpha-H) as diagnostic signals. Theoretical (AM1, HF, and B3 LYP calculations) and experimental data (dynamic and low-temperature NMR spectroscopy, studies on deuterated derivatives, constant coupling analysis, circular dichroism (CD) spectra, and NMR studies with a number of diols of known absolute configuration) prove that the signs of the delta delta(RS) obtained for those signals correlate with the absolute configuration of the diol. A graphical model for the reliable assignment of the absolute configuration of a 1,2-diol by comparison of the NMR spectra of its bis-(R)- and bis-(S)-MPA esters is presented.  相似文献   

10.
Asymmetric enzyme-catalyzed hydrolysis of methylene-interrupted bis-epoxides 1 a and 1 b catalyzed by bacterial epoxide hydrolases furnished tetrahydrofuran derivatives 2 a and 2 b through a hydrolysis-rearrangement cascade. Whereas racemic bis-oxiranes 1 b-d underwent kinetic resolution with moderate stereoselectivities to yield products with up to 92 % ee and 66 % de: meso-bis-oxirane cis,cis-1 a was transformed into (6R,7R,9S,10S)-2 a in 94 % ee and 89 % de at high conversion (85 %) by Rhodococcus sp. CBS 717.73 as the major product. The reaction sequence resembles a biomimetic reaction cascade and provides an efficient entry into the structural core of annonaceous acetogenins with simultaneous control of four stereocenters.  相似文献   

11.
Two new diterpenoids have been isolated from tobacco. They have been identified as the (1S,2E,4S,6R,7R,8R,11E)- and (1S,2E,4S,6R,7S,8S,11E)-7,8-epoxy-2,11-cembradiene-4,6-diols 1 and 2 by synthesis and X-ray analysis. The conformation about the 5,6 bond in some 7,8-epoxycembranoids is discussed, as is the biogenesis of the two new compounds.  相似文献   

12.
A palladium(II)-catalyzed hydroxycyclization-carbonylation-lactonization sequence with appropriate pent-4-ene-1,3-diols provides efficient access to the bicyclic gamma-lactones, 5-n-butyl- and 5-n-hexyltetrahydrofuro-[3,2-b]furan-2(3H)-ones (3) and (4), respectively, in both racemic and enantiomeric forms. Some of the substrate pent-4-ene-1,3-diols of high enantiomeric excess (ee) have been derived from racemic terminal epoxides by hydrolytic kinetic resolution (HKR) using cobalt (III)-salen complexes. (9Z,12R)-(+)-Ricinoleic acid also serves as a "chiral pool" source of other pent-4-ene-1,3-diols. These syntheses and enantioselective gas chromatography confirm the structures and absolute stereochemistry of the lactones in some species of parasitic wasps (Hymenoptera: Braconidae). The highly abundant 5-n-hexyltetrahydrofuro-[3,2-b]furan-2(3H)-one (4) in Diachasmimorpha kraussii and D. longicaudata is of high ee (>99%) with (3aR,5R,6aR) stereochemistry.  相似文献   

13.
采用大位阻的有机锂试剂或格氏试剂与卤代烯烃偶联合成了7种大位阻取代烯烃. 以Oxone(KHSO5)作为氧化剂, 分别在D-果糖衍生酮和(2S,5R)-2-异丙基-5-甲基环己酮为催化剂的催化下, 将合成的7种大位阻取代烯烃转变成了7个大位阻的手性环氧化合物. 其中以D-果糖衍生酮的对映选择性最好, 当双键碳上含有3个取代基时, 对映选择性最高, e.e.值为96.8%~99.5%. (2S, 5R)-2-异丙基-5-甲基环己酮的对映选择性较差, 无论是一取代的烯烃还是三取代的烯烃, 其e.e.值均介于25.6%~34.1%之间.  相似文献   

14.
The bacterial strain Sphingomonas sp. HXN-200 was used to catalyze the trans dihydroxylation ofN-substituted 1,2,5,6-tetrahydropyridines 1 and 3-pyrrolines 4 giving the corresponding 3,4-dihydroxypiperidines 3 and 3,4-dihydroxypyrrolidines 6, respectively, with high enantioselectivity and high activity. The trans dihydroxylation was sequentially catalyzed by a monooxygenase and an epoxide hydrolase in the strain with epoxide as intermediate. While both epoxidation and hydrolysis steps contributed to the overall enantioselectivity in trans dihydroxylation of 1, the enantioselectivity in trans dihydroxylation of the symmetric substrate 4 was generated only in the hydrolysis of meso-epoxide 5. The absolute configuration for the bioproducts (+)-3 and (+)-6 was established as (3R,4R) by chemical correlations. Preparative trans dihydroxylation of 1a and 4b with frozen/thawed cells of Sphingomonas sp. HXN-200 afforded the corresponding (+)-(3R,4R)-3,4-dihydroxypiperidine 3a and (+)-(3R,4R)-3,4-dihydroxy pyrrolidine 6b in 96% ee both and in 60% and 80% yield, respectively. These results represent first examples of enantioselective trans dihydroxylation with nonterpene substrates and with bacterial catalyst, thus significantly extending this methodology in practical synthesis of valuable and useful trans diols. Enantioselective hydrolysis of racemic epoxide 2a with Sphingomonas sp. HXN-200 gave 34% of (-)-2a in >99% ee, which is a versatile chiral building block. Further hydrolysis of (-)-2a with the same strain afforded (-)-(3S,4S)-3a in 96% ee and 92% yield. Thus, both enantiomers of 3a can be prepared by biotransformation with Sphingomonas sp. HXN-200.  相似文献   

15.
Desymmetrizaton enzymatic processes have been extensively studied searching for optimal methods of producing enantioenriched monoacetates from prochiral diols and diesters. AK lipase has been found as an excellent biocatalyst for the desymmetriaztion of a series of previously synthesized 3-arylpentane-1,5-diols derivatives. The access to (S)- or (R)-monoacetates in high optical purity (86-99% ee) has been possible by using acetylation or hydrolysis reactions, respectively, where the reaction parameters have been optimized in terms of source and amount of biocatalyst, temperature, solvent, and reaction time. The synthetic potential of enantiopure monoesters has been demonstrated by using these interesting chiral building blocks for the preparation of novel enantiopure carboxylic acid derivatives.  相似文献   

16.
[structures: see text] The absolute configuration of 1,2-, 1,3-, 1,4-, and 1,5-diols formed by two secondary (chiral) hydroxy groups can be deduced by comparison of the NMR spectra of the corresponding bis-(R)- and bis-(S)-MPA esters. The correlation between the NMR spectra of the bis-ester derivatives and the absolute stereochemistry of the diol involves the comparison of the chemical shifts of the signals for substituents R1/R2 and for the hydrogens attached to the two chiral centers [H(alpha)(R1) and H(alpha)(R2)] in the bis-(R)- and the bis-(S)-ester and is expressed as delta deltaRS. Theoretical calculations [energy minimization by semiempirical (AM1), ab initio (HF), DFT (B3LYP), and Onsager methods, and aromatic shielding effect calculations] and experimental data (NMR and CD spectroscopy) indicate that in these bis-MPA esters, the experimental delta deltaRS values are the result of the contribution of the shielding/deshielding effects produced by the two MPA units that combine according to the actual stereochemistry of the diol. The reliability of these correlations is demonstrated with a wide range of diols of known absolute configuration derivatized with MPA and 9-AMA as auxiliary reagents. A simple graphical model that allows the simultaneous assignment of the two asymmetric carbons of a 1,n-diol by comparison of the NMR spectra (delta deltaRS signs) of its bis-(R)- and bis-(S)-AMAA ester derivatives is presented.  相似文献   

17.
The complete reaction mechanism of soluble epoxide hydrolase (sEH) has been investigated by using the B3LYP density functional theory method. Epoxide hydrolases catalyze the conversion of epoxides to their corresponding vicinal diols. In our theoretical study, the sEH active site is represented by quantum-chemical models that are based on the X-ray crystal structure of human soluble epoxide hydrolase. The trans-substituted epoxide (1S,2S)-beta-methylstyrene oxide has been used as a substrate in the theoretical investigation of the sEH reaction mechanism. Both the alkylation and the hydrolytic half-reactions have been studied in detail. We present the energetics of the reaction mechanism as well as the optimized intermediates and transition-state structures. Full potential energy curves for the reactions involving nucleophilic attack at either the benzylic or the homo-benzylic carbon atom of (1S,2S)-beta-methylstyrene oxide have been computed. The regioselectivity of epoxide opening has been addressed for the two substrates (1S,2S)-beta-methylstyrene oxide and (S)-styrene oxide.  相似文献   

18.
The docking of analytes on the Whelk-O1 chiral stationary phase is explored for two chiral epoxides in a hexane solvent. Density functional theory calculations are employed to develop flexible models for R/S-styrene oxide (phenyl oxirane) and (R,R/S,S)-stilbene oxide (2,3-diphenyl oxirane). Molecular dynamics simulations of the racemates in the presence of the Whelk-O1 chiral stationary phase reveal the distribution of the enantiomers at the interface. The importance of hydrogen bonding and ring-ring interactions is explored along with an examination of the major docking arrangements. The interactions between the Whelk-O1 molecules and the chiral epoxide enantiomers are quite distinct and consistent with the experimental elution orders [S.E. Schaus, B.D. Brandes, J.F. Larrow, M. Tokunage, K.B. Hansen, A.E. Gould, M.E. Furrow, E.N. Jacobsen, J. Am. Chem. Soc. 124 (2001) 1307] and separation factors [W.H. Pirkle, C.J. Welch, Tetrahedron: Asymm. 5 (1994) 777]. The impact of a polar solvent modifier is examined for R/S-styrene oxide where selectivity in 80:20 n-hexane:2-propanol is assessed.  相似文献   

19.
[reaction: see text] Biotransformations of a number of differently substituted and configured oxiranecarbonitriles using Rhodococcus sp. AJ270, a microbial whole-cell catalyst that contains nitrile hydratase/amidase, were studied. While almost all trans-configured 3-aryl-2-methyloxiranecarbonitriles and 2,3-dimethyl-3-phenyloxiranecarbonitrile were efficiently hydrated by the action of the less enantioselective nitrile hydratase, the amidase exhibited excellent 2S,3R-enantioselectivity against 2-methyl-3-(para-substituted-phenyl)oxiranecarboxamides. Under very mild conditions, biotransformations of nitriles provided an efficient and practical synthesis of 2R,3S-(-)-3-aryl-2-methyloxiranecarboxamides, electrophilic epoxides with tertiary and quaternary stereocenters, in excellent yield with enantiomeric excess greater than 99.5%. The synthetic applications of the resulting enantiomerically pure epoxides were demonstrated by convenient and straightforward syntheses of polyfunctionalized chiral molecules possessing a quaternary stereocenter such as R-(+)-2-hydroxy-2-methyl-3-phenylpropionic acid, 2R,3R-(-)-3-amino-2-hydroxy-2-methyl-3-phenylpropionic acid, and 2S,3S-(+)-2-amino-3-hydroxy-2-methyl-3-phenylpropionic acid, employing the regio- and stereospecific epoxide ring opening reactions of 2R,3S-(-)-2-methyl-3-phenyloxiranecarboxamide as the key steps.  相似文献   

20.
(Tributylstannyl)methyl 2,2,6,6-tetramethylpiperidine-1-carboxylate was metalated with t-BuLi/TMEDA at -78 degrees C and borylated with the mixed borate derived from (R,R)-1,2-dicyclohexylethane-1,2-diol and t-butanol to give diastereomeric boronates 31/32 in equal amounts. Boronates 31 and 32 were reduced with LiBEt3D and then oxidized with basic H2O2 to give (S)- and (R)-tributylstannyl-[1-2H1]methanol of 99% ee, respectively. Treatment of their respective phosphates with n-BuLi at -78 and 0 degrees C gave microscopically configurationally stable phosphinyloxy-substituted [2H1]methyllithiums, which rearranged to hydroxy-[1-2H1]methylphosphonates of ee > 98% (phosphate-phosphonate rearrangement). The N,N-diisopropylcarbamates of the enantiomeric tributylstannyl-[1-2H1]methanols were transmetalated to give carbamoyloxy-substituted chiral [2H1]methyllithiums, which were macroscopically configurationally stable for prolonged periods of time (up to 3 h, ee still 99%) at -78 degrees C, deduced from trapping experiments with benzaldehyde. The chemical stability of these methyllithiums ended at -50 degrees C. The stereochemistry of the monoprotected and monodeuterated 1-phenylethane-1,2-diols obtained was secured by spectroscopic comparison of their Mosher esters with that of all four stereoisomeric 1-phenyl-[1-2H1]ethane-1,2-diols synthesized independently. Furthermore, the configurations of the boronates and the chiral methyllithiums derived from them were deduced from a single-crystal X-ray structure analysis of a carbamate in which the tributylstannyl group had been replaced by the [(1R)-menthyl]dimethylstannyl group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号