首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
六硝基六氮杂异伍兹烷(HNIW)是一笼形硝胺,它是迄今已知的能量最高的高能量密度化合物(HEDC),本文由四乙酰基二甲酰基六氮杂异伍兹烷(TADFIW)合成了HNW。所合成的HNW中含有少量(2%~3%)的未硝解完全的副产物,经分离鉴定,确定其为五硝基一甲酰基六氮杂异伍兹烷(PNMFIW)。以此路线合成HNW有以下优点:催化剂耗量低,反应条件温和,得率高,流程简单等。  相似文献   

2.
γ-六硝基六氮杂异伍兹烷的晶体结构   总被引:3,自引:0,他引:3  
合成了六硝基六氮杂异伍兹烷(HNIW),用溶剂缓慢挥发法制得了γ-HNIW的单晶,以X射线衍射仪测定了晶体结构,属于单斜晶系,空间群P2~1/n。晶胞参数为:a=1.3213(11)nm,b=0.8161(6)nm,c=1.4898(4)nm;β=109.168(9)ⅲ;Z=4;V=1.5175(4)nm^3。Dc=1.918g/cm^3,Dm=1.92g/cm^3。最终偏离因子R=0.0360。  相似文献   

3.
欧育湘  刘进全  王艳飞  孟征 《化学通报》2005,68(10):731-735
综述了六苄基六氮杂异伍兹烷(HBIW)五种氢解脱苄化合物的合成条件和工业制备工艺。这五种化合物是:四乙酰基二苄基六氮杂异伍兹烷(TADBIW)、四乙酰基二甲酰基六氮杂异伍兹烷(TADFIW)、四乙酰基六氮杂异伍兹烷(TAIW)、四乙酰基二乙基六氮杂异伍兹烷(TADEIW)和六乙酰基六氮杂异伍兹烷(HAIW)。其中的TADBIW系由HBIW经一次氢解合成,其它四种都系由HBIW经两次氢解合成。HBIW的这五种氢解脱苄化合物均可经硝解合成六硝基六氮杂异伍兹烷(HNIW)。另外,本文总结了HBIW及其五种氢解脱苄产物的红外、核磁和质谱数据及它们的基本性能参数。  相似文献   

4.
运用量子化学中非限制性Hartree-Fock自洽场(UHF-SCF)PM3分子轨道(MO)方法,计算研究六硝基六氮杂异伍兹烷(HNIW或CL-20)的最稳定ε晶型化合物的气相热解引发反应.求得可能的四种不同热解反应通道的过渡态、活化能和位能曲线,发现其热解引发步骤为五元环上侧链N—NO2键的均裂.在过渡态附近相关原子电荷发生突变.  相似文献   

5.
ε-六硝基六氮杂异伍兹烷(CL-20)热解机理的理论研究   总被引:2,自引:0,他引:2  
运用量子化学中非限制性Hartree-Fock自洽场(UHF-SCF) PM3分子轨道(MO)方法, 计算研究六硝基六氮杂异伍兹烷(HNIW或CL-20)的最稳定ε晶型化合物的气相热解引发反应. 求得可能的四种不同热解反应通道的过渡态、活化能和位能曲线, 发现其热解引发步骤为五元环上侧链N—NO2键的均裂. 在过渡态附近相关原子电荷发生突变.  相似文献   

6.
六硝基六氮杂异伍兹烷(HNIW)可与二甲基甲酰胺(DMF)形成稳定的分子加合物(两者分子比为1:2)。首次报道了该加合物的晶体结构、晶体学数据和结构参数。该加合物为无色透明片状晶体,属三斜晶系,空间群Pi。在该加合物中,HNIW与DMF分子以范德华力结合,彼此间不存在氢键或偶极作用。  相似文献   

7.
综述了六苄基六氮杂异伍兹烷(HBIW)五种氢解脱苄化合物的合成条件和工业制备工艺。这五种化合物是:四乙酰基二苄基六氮杂异伍兹烷(TADBIW)、四乙酰基二甲酰基六氮杂异伍兹烷(TADFIW)、四乙酰基六氮杂异伍兹烷(TAIW)、四乙酰基二乙基六氮杂异伍兹烷(TADEIW)和六乙酰基六氮杂异伍兹烷(HAIW)。其中的TADBIW系由HBIW经一次氢解合成,其它四种都系由HBIW经两次氢解合成。HBIW的这五种氢解脱苄化合物均可经硝解合成六硝基六氮杂异伍兹烷(HNIW)。另外,本文总结了HBIW及其五种氢解脱苄产物的红外、核磁和质谱数据及它们的基本性能参数。  相似文献   

8.
高张力笼形氮杂环化合物的合成   总被引:9,自引:0,他引:9  
以六苄基六氮杂异伍兹烷(HBIW)为母体,Pd(OH)2/C为催化剂,在温和条件下,通过选择性催化氢解脱苄,使部分或全部苄基被其它官能团(如CH3O-,C2H5-,CHO-)取代,合成了4种N-取代六氮杂异伍兹烷,并鉴定了它们的结构.这些化合物都是高张力的笼形氮杂环化合物,且均可作为合成六硝基六氮杂异伍兹烷(HNIW)的前体,而HNIW是当今最引人注目和最有军用前景的高能量密度化合物(HEDC).  相似文献   

9.
分别采用紫外光谱、红外光谱、质谱、一维核磁共振光谱及X-射线粉末衍射法对ε型六硝基六氮杂异伍兹烷进行结构确证,并对其核磁共振谱(H谱和C谱)进行了归属判别。根据谱学特征确证了ε型六硝基六氮杂异伍兹烷的结构。  相似文献   

10.
在(2.0±0.1) MPa氩气氛围下六硝基六氮杂异伍兹烷(HNIW)在(204.0±0.5)、(208.0±0.5)、(212.0±0.5)和(216.0±0.5) ℃下分别加热10、20、30、40、50 和60 min. 采用元素分析、扫描电子显微镜(SEM)、傅立叶变换红外(FTIR)光谱仪、差示扫描量热(DSC)仪、热重-差示扫描量热仪-质谱(TG-DSC-MS)仪和热重-红外(TG-FTIR)仪对(208.0±0.5) ℃下得到的残余物进行研究. 结果表明, HNIW离子在210.0 ℃左右恒温热解60 min 后, 残余物的组成为C2H2N2O. 残余物中未分解的HNIW比初始HNIW稳定性差. 在等温条件下, HNIW是逐步分解的. HNIW残余物的热分解分为三个阶段, 第一个分解阶段主要为未分解的HNIW的热分解, 第二阶段主要为五员环硝铵和碳氮杂环化合物的分解反应, 第三阶段主要为五员环硝铵的分解反应和NO2的二次反应, 并获得了每一个阶段的热分解产物.  相似文献   

11.
异伍兹烷衍生物的研究进展   总被引:5,自引:0,他引:5  
六硝基六氮杂异伍兹烷(HNIW或CL-20)是当今世界上综合性能最好的单质炸药,在20余年的研究过程中,各国研究者合成出了百余种异伍兹烷衍生物.根据笼体上取代基的不同以及合成反应的类型,系统总结了各类衍生物的合成、用途及反应性.最后对异伍兹烷衍生物的发展方向进行了展望.  相似文献   

12.
采用低能电子轰击质谱研究了六硝基六氮杂异伍兹烷(HNIW)的裂解过程, 建立了质谱中离子强度曲线的非等温动力学处理方法, 根据产物离子的Arrhenius曲线解释了HNIW热分解的机理. 结果表明, HNIW质谱裂解的表观活化能为145.1 kJ·mol-1. 在130-150 ℃范围内, HNIW质谱的离子产物主要是电子轰击产生的, 其活化能在28-41 kJ·mol-1之间; 在213-228 ℃范围内, 离子主要是热分解产生的, 其活化能在143-179 kJ·mol-1之间. HNIW在213-228 ℃的热分解动力学参数存在良好的动力学补偿效应, 补偿效应公式为lnA=0.252Ea-0.645. HNIW 热分解的主要反应为HNIW.438→6NO2+2HCN+HNIW.108, HNIW.438→6NO2+3HCN+HNIW.81, HNIW.438→6NO2+4HCN+HNIW.54.  相似文献   

13.
多组分炸药混合物中CL-20的高效液相色谱测定   总被引:5,自引:0,他引:5  
在过去几年内已经有许多新炸药被合成,无论是对于实验室工作还是产品的质量控制,这些新炸药能够被定性定量分析都是很重要的[1].六硝基六氮杂异伍兹烷(简称HNIW或 CL-20)就是其中的一种,CL-20的潜在应用包括作为军用或者空间飞行器的推进剂.  相似文献   

14.
β-六硝基六氮杂异伍兹烷的合成及晶体结构   总被引:2,自引:1,他引:2  
从苄胺和乙二醛出发 ,通过缩合、氢解脱苄及硝解三步合成了高张力多环笼形化合物———六硝基六氮杂异伍兹烷 (HNIW) ,它是迄今为止密度及能量水平最高的高能量密度化合物 .β HNIW的晶体结构表明 ,它是由 2个五元环及 1个六元环构成的笼形结构 ,每个桥氮原子上各连有 1个硝基 ,—NO2 基本位于一平面内 ,C—C键长为 0 1 5 6~ 0 .1 5 9nm ,比标准的sp3 C—C键长 0 0 0 2~ 0 .0 0 5nm .晶体学数据为 :正交晶系 ,空间群Pca2 1,a =0 .96 70 ( 2 )nm ,b =1 .1 6 1 6 ( 2 )nm ,c =1 .30 32 ( 3)nm ;V =1 .46 38( 5 )nm3 ,Z =4,Dc=1 .989g·cm-3 (Dm=1 .982 g·cm-3 ) .  相似文献   

15.
四硝基二(叠氮乙酰基)六氮杂异伍兹烷(TNDAIW)是一种新型的多氮杂、多环、笼 形、多叠氮基的硝胺炸药, 该炸药由本实验室合成. 文中采用了AM1和PM3半经验量子化学方法对TNDAIW所有的可能构型进行优化. 结果显示, TNDAIW的构型比六硝基六氮杂异伍兹烷(CL-20)的晶体结构复杂. 然后, 在HF/6-31G(d)理论水平上对D型TNDAIW的AM1和PM3 能量最低的构型进行了研究. 根据N-NO2键的键长预测具有优化的可能构型的D-TNDAIW比e-CL-20要稳定. 可能构型DA-TNDAIW和DP-TNDAIW的撞击和冲击感度预计比e-CL-20的低. 因此, 具有预测构型的TNDAIW将是很有希望的高能能量密度的炸药.  相似文献   

16.
六硝基六氮杂异伍兹烷(HNIW)可与二甲基甲酰胺(DMF)形成稳定的分子加合物(两者分子比为1:2)。首次报道了该加合物的晶体结构、晶体学数据和结构参数。该加合物为无色透明片状晶体,属三斜晶系,空间群Pi。在该加合物中,HNIW与DMF分子以范德华力结合,彼此间不存在氨键或偶极作用。  相似文献   

17.
六硝基六氮杂异伍兹烷结构和性质的理论研究   总被引:1,自引:0,他引:1  
张骥  肖鹤鸣  姬广富 《化学学报》2001,59(8):1265-1271
用abinitio和DFT方法,分别在HF/6-31G^*和B3LYP/6-31G^*水平下全优化计算了高能量密度材料六硝基六氮杂异伍兹烷(HNIW)的α(γ),β和ε型构象的分子几何构型、电子结构、IR谱和298~1000K温度下的热力学性质,细致分析比较了两种方法和相关的实验结果。理论计算几何参数与实验值相一致。分子中N—N键较长,N—N键Mulliken集居数较小,预示该键为热解和起爆的引发键。所得的IR谱形符合实验、指纹区频率与实验的平均绝对差值小于45cm^-1。由前线MO能级及其差值预示的热力学稳定性次序[ε>α(γ)>β]与实验排序相吻合。  相似文献   

18.
2,4,6,8,10,12-六硝基-2,4,6,8,10,12-六氮杂异伍兹烷(HNIW)作为目前威力最大的单质炸药,日益受到各国国防和航空工业的重视^[1,2]。HNIW的合成,大体上分为缩合、催化氢解和硝化三步。在原料2,4,6,8,10,12-六氯杂异伍兹烷(HNIW)作为目前威力 最大的单质炸药,日前受到各国国防和航空工业的重视^[1,2]。HNIW的合成,大体上分为缩合、催化氢解和硝化三步。在原料2,4,6,8,10,12-六苄基-2,4,6,8,10,12-氮杂异伍兹烷(HBIW,化合物1)催化氢解中,催化剂Pd(OH)2/C因制备和回收工艺繁锁而成本较高,是造成HNIW生产成本居高不下的主要原因^[3]。改进催化氢解的催化剂,对HNIW的工业化生产具有重要意义。很多催化剂的催化效率随催化剂颗粒减小到纳米量级而显著提高[4,5],Pd(OH)2纳米粒子催化活性可望超过Pd(OH2)/C催化剂,用于催化氢解中。本文用共沸蒸馏法对自制的水合Pd(OH)2进行脱水处理,首次制得了Pd(OH)2纳米粒子。采用高分辨率透射电镜、激光动态光散射、紫外-可见吸收研究了Pd(OH)2纳米粒子的微观结构,并比较了Pd(OH)2纳米粒子和Pd(OH)2/C在化合物1催化氢解中的活性。  相似文献   

19.
采用定量核磁共振波谱法(qNMR)测定六硝基六氮杂异伍兹烷(CL-20)标准物质中有机杂质的含量。核磁谱图解析证明,主要有机杂质成分为残余溶剂乙酸乙酯和中间体五硝基-乙酰基六氮杂异伍兹烷(MPIW),以不含四甲基硅烷(TMS)的氘代丙酮为溶剂,将六甲基二硅醚的四氯化碳标准溶液加入待测液中作为内标,以其谱峰(δ=0.06)作为内标峰对两种有机杂质进行定量分析。考察了延迟时间和采样次数对准确定量的影响,结果显示为确保定量结果的准确性,延迟时间D_1应不小于20 s,采样次数为32次。采用优化后的实验参数进行纯度分析,测得CL-20标准物质中有机杂质乙酸乙酯和MPIW的质量分数分别为0.03516%和0.156 2%,相对标准偏差(RSD)分别为0.91%和0.86%。  相似文献   

20.
六硝基六氮杂三环十二烷二酮的密度泛函理论研究   总被引:8,自引:0,他引:8  
对迄今为止爆速最高的高能化合物六硝基六氮杂三环十二烷二酮(HHTDD)的结构和性质实现了DFT-B3LYP/CEP-31G水平的计算研究。其全优化几何构型中六员氮杂环可取椅式和船式2种构象,并以船式构象更稳定。基于集居数、自然键轨道(NBO)、分子总能量和前线轨道能量等电子结构参数对该化合物若干性质进行了探讨。尤其揭示了分子中NNO2键所表现出的最大活性。在振动分析的基础上求得273~800 K温度范围内体系的热力学性质。从理论上预测的爆速与实测值相吻合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号