首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Electrospray ionization (ESI) in combination with Fourier transform ion cyclotron resonance (FTICR) mass spectrometry provides for mass analysis of biological molecules with unrivaled mass accuracy, resolving power and sensitivity. However, ESI FTICR MS performance with on-line separation techniques such as liquid chromatography (LC) and capillary electrophoresis has to date been limited primarily by pulsed gas assisted accumulation and the incompatibility of the associated pump-down time with the frequent ion beam sampling requirement of on-line chromatographic separation. Here we describe numerous analytical advantages that accrue by trapping ions at high pressure in the first rf-only octupole of a dual octupole ion injection system before ion transfer to the ion trap in the center of the magnet for high performance mass analysis at low pressure. The new configuration improves the duty cycle for analysis of continuously generated ions, and is thus ideally suited for on-line chromatographic applications. LC/ESI FTICR MS is demonstrated on a mixture of 500 fmol of each of three peptides. Additional improvements include a fivefold increase in signal-to-noise ratio and resolving power compared to prior methods on our instrument.  相似文献   

2.
The dynamic range of Fourier transform ion cyclotron mass spectrometry (FTICR) is typically limited by the useful charge capacity of an FTICR cell (to approximately 10(6) to 10(7) elementary charges) and the minimum number of ions required to produce a useful signal (approximately 10(2) elementary charges). We show that the expansion of the dynamic range by 2 orders of magnitude can be achieved by preselecting lower abundance species in a quadrupole interface to an electrospray ionization (ESI) source. Ion preselection is then followed by ion accumulation in external to the FTICR cell a linear (2-D) quadrupole trap and subsequent transfer to the region of high magnetic field for gated trapping in the FTICR cell. Two modes of ion preselection, using either the quadrupole filtering mode or rf-only dipolar excitation, were studied and mass resolutions of 30 to 100 were achieved for selective external ion accumulation of peptides and proteins with molecular weights ranging from 500 to 17,000 Da. The ability to selectively eject the most abundant species before trapping in the FTICR has enormous practical benefits for increasing the sensitivity and dynamic range of measurements.  相似文献   

3.
The use of a central trapping ring electrode for Fourier transform ion cyclotron resonance (FTICR) mass spectrometry is demonstrated. Ions are trapped with an oppositely biased static potential superimposed on both the excite and detect electrodes and maintained throughout the experiment, including the application of a dipolar rf excite waveform and the image current ion detection event. The use of a central trapping electrode for FTICR coupled with an open cell design retains the advantages of high ion throughput and gas conductance, while simplifying the electrode geometry and reducing the overall dimensions of the cell. This allows the central trapping electrode to be of utility in volume-limited vacuum chambers including FTICR instrument miniaturization. Presented here are the preliminary experimental results using the central trapping electrode as an FTICR cell in which the excitation and detection electrodes also create a trapping depression to constrain the z-axis motion of the ions. The cell overcomes the principle limitation of an earlier single trapping electrode design by producing a 91% effective potential well depth compared to 19% for the single trapping electrode and 33% for standard open cells. This allows the central trapping electrode configuration to achieve an order of magnitude improvement in ion capacity compared to more conventional open cell designs.  相似文献   

4.
We describe a fully automated high performance liquid chromatography 9.4 tesla Fourier transform ion resonance cyclotron (FTICR) mass spectrometer system designed for proteomics research. A synergistic suite of ion introduction and manipulation technologies were developed and integrated as a high-performance front-end to a commercial Bruker Daltonics FTICR instrument. The developments incorporated included a dual-ESI-emitter ion source; a dual-channel electrodynamic ion funnel; tandem quadrupoles for collisional cooling and focusing, ion selection, and ion accumulation, and served to significantly improve the sensitivity, dynamic range, and mass measurement accuracy of the mass spectrometer. In addition, a novel technique for accumulating ions in the ICR cell was developed that improved both resolution and mass measurement accuracy. A new calibration methodology is also described where calibrant ions are introduced and controlled via a separate channel of the dual-channel ion funnel, allowing calibrant species to be introduced to sample spectra on a real-time basis, if needed. We also report on overall instrument automation developments that facilitate high-throughput and unattended operation. These included an automated version of the previously reported very high resolution, high pressure reversed phase gradient capillary liquid chromatography (LC) system as the separations component. A commercial autosampler was integrated to facilitate 24 h/day operation. Unattended operation of the instrument revealed exceptional overall performance: Reproducibility (1-5% deviation in uncorrected elution times), repeatability (<20% deviation in detected abundances for more abundant peptides from the same aliquot analyzed a few weeks apart), and robustness (high-throughput operation for 5 months without significant downtime). When combined with modulated-ion-energy gated trapping, the dynamic calibration of FTICR mass spectra provided decreased mass measurement errors for peptide identifications in conjunction with high resolution capillary LC separations over a dynamic range of peptide peak intensities for each spectrum of 10(3), and >10(5) for peptide abundances in the overall separation.  相似文献   

5.
Fourier transform ion cyclotron resonance (FTICR) mass spectrometers function such that the ion accumulation event takes place in a region of higher pressure outside the magnetic field which allows ions to be thermally cooled before being accelerated toward the ICR cell where they are decelerated and re-trapped. This transfer process suffers from mass discrimination due to time-of-flight effects. Also, trapping ions with substantial axial kinetic energy can decrease the performance of the FTICR instrument compared with the analysis of thermally cooled ions located at the trap center. Therefore, it is desirable to limit the energy imparted to the ions which results in lower applied trap plate potentials and reduces the spread in axial kinetic energy. The approach presented here for ion transfer, called restrained ion population transfer or RIPT, is designed to provide complete axial and radial containment of an ion population throughout the entire transfer process from the accumulation region to the ICR cell, eliminating mass discrimination associated with time-of-flight separation. This was accomplished by use of a number of quadrupole segments arranged in series with independent control of the direct current (DC) bias voltage applied to each segment of the quadrupole ion guide. The DC bias voltage is applied in such a way as to minimize the energy imparted to the ions allowing transfer of ions with low kinetic energy from the ion accumulation region to the ICR cell. Initial FTICR mass spectral data are presented that illustrate the feasibility of RIPT. A larger m/z range for a mixture of peptides is demonstrated compared with gated trapping. The increase in ion transfer time (3 ms to 130 ms) resulted in an approximately 11% decrease in the duty cycle; however this can be improved by simultaneously transferring multiple ion populations with RIPT. The technique was also modeled with SIMION 7.0 and simulation results that support our feasibility studies of the ion transfer process are presented.  相似文献   

6.
External ion accumulation in a two-dimensional (2D) multipole trap has been shown to increase the sensitivity, dynamic range and duty cycle of a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. However, it is important that trapped ions be detected without significant bias at longer accumulation times in the external 2D multipole trap. With increasing ion accumulation time pronounced m/z discrimination was observed when trapping ions in an accumulation quadrupole. In this work we show that superimposing lower rf-amplitude dipolar excitation over the main rf-field in the accumulation quadrupole results in disruption of the m/z discrimination and can potentially be used to achieve unbiased external ion accumulation with FTICR.  相似文献   

7.
Initial results obtained using a new electrospray ionization (ESI) Fourier transform ion cyclotron resonance (FTICR) mass spectrometer operated at a magnetic field 11.5 tesla are presented. The new instrument utilized an electrostatic ion guide between the ESI source and FTICR trap that provided up to 5% overall transmission efficiency for light ions and up to 30% efficiency for heavier biomolecules. The higher magnetic field in combination with an enlarged FTICR ion trap made it possible to substantially improve resolving power and operate in a more robust fashion for large biopolymers compared to lower field instruments. Mass resolution up to 106 has been achieved for intermediate size biopolymers such as bovine ubiquitin (8.6 kDa) and bovine cytochrome c (12.4 kDa) without the use of frequency drift correction methods. A mass resolution of 370,000 has been demonstrated for isotopically resolved molecular ions of bovine serum albumin (66.5 kDa). Comparative measurements were made with the same spectrometer using a lower field 3.5-tesla magnet allowing the performance gains to be more readily quantified. Further improvements in pumping capacity of the vacuum system and efficiency of ion transmission from the source are expected to lead to further substantial sensitivity gains.  相似文献   

8.
Externally generated ions are accumulated in a linear octopole ion trap before injection into our 9.4 T Fourier transform ion cyclotron resonance (FT-ICR) mass analyzer. Such instrumental configuration has previously been shown to provide improved sensitivity, scan rate, and duty cycle relative to accumulated trapping in the ICR cell. However, inefficient ion ejection from the octopole currently limits both detection limit and scan rate. SIMION 7.0 analysis predicts that a dc axial electric field inside the linear octopole ion trap expedites and synchronizes the efficient extraction of the octopole-accumulated ions. Further SIMION analysis optimizes the ion ejection properties of each of three electrode configurations designed to produce a near-linear axial potential gradient. More efficient extraction and transfer of accumulated ions spanning a wide m/z range promises to reduce detection limit and increase front-end sampling rate (e.g., to increase front-end resolution for separation techniques coupled with FT-ICR mass analysis). Addition of the axial field improves experimental signal-to-noise ratio by more than an order of magnitude.  相似文献   

9.
The trapping and detection parameters employed with a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer that is interfaced to a high magnetic field electrospray ionization (ES11 source are presented. ES1 occurs at atmospheric pressure in a 1.5-T field, and FTICR detection occurs 25 cm away at 3.0 T in either one of two cells separated by a conductance limit and maintained at pressure differentials of 5 × 105 and 2 × 107 torr, respectively. The continuous electrospray ion current traversing the high- and low-pressure cells is 350 and 100 pA, respectively. Retarding grid studies at the high-pressure cell indicate electrospray ion kinetic energies are controllable from less than an electronvolt to more than 10 eV. These kinetic energies are a function of desolvating capillary-skimmer assembly distance and the skimmer potential. Efficient accumulation of injected ions is accomplished only when the trap-plate potential matches the ion kinetic energy. If this condition is satisfied, the trapped ion cell fills to the ion space charge limit within a few hundred milliseconds. It is concluded that even at the high pressures used, the primary trapping mechanism cannot be solely collision dependent because the rate of ion accumulation is independent of background pressure. However, optimized FTICR excitation conditions for peptides and proteins in the mass range from 103 to more than 106 kDa are found to vary strongly with pressure; this is attributed to large mass- and charge-dependent differences in ion-molecule collision frequency.  相似文献   

10.
A sensitive, integrated top-down liquid chromatography/mass spectrometry (LC/MS) approach, suitable for the near complete characterization of specific proteins in complex protein mixtures, such as inclusion bodies of an E. coli lysate, has been successfully developed using a hybrid linear ion trap/Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. In particular, human growth hormone (hGH) (200 fmol) was analyzed with high sequence coverage (>95%), including the sites of disulfide linkages. The high mass accuracy and resolution of the FTICR mass spectrometer was used to reveal high charge state ions of hGH (22 kDa). The highly charged intact protein ions (such as the 17+ species) were captured and fragmented in the linear ion trap cell. The fragment ions from MS/MS spectra were then successfully analyzed in the FTICR cell in an on-line LC/MS run. Peptide fragments from the N-terminal and C-terminal regions, as well as large interior fragments, were captured and identified. The results allowed the unambiguous assignment of disulfide bonds Cys53-Cys165 and Cys182-Cys189, indicative of proper folding of hGH. The disulfide bond assignments were also confirmed by analysis of the tryptic digest of a sample of hGH purified from inclusion bodies. On-line LC/MS with the linear ion trap/FTICR yields high mass accuracy in both the MS and MS/MS modes (within 2 ppm with external calibration). The approach should prove useful in biotechnology applications to characterize correctly folded proteins, both in the early protein expression and the later processed stages, using only a single automated on-line LC/MS top-down method.  相似文献   

11.
An efficient approach for trapping ions and enhancing signal based on 'adiabatic amplitude reduction' for Fourier transform ion cyclotron resonance (FTICR) mass spectrometry is described and evaluated. This method is a modification to the widely used gated trapping technique in which the trapping potential is raised adiabatically rather than instantaneously (non-adiabatically). Compared with non-adiabatic gated trapping, the final amplitudes of ion axial oscillations and energies are lower in the proposed method. All performance aspects of the FTICR spectrum (e.g., peak intensities, mass resolution, and mass accuracy) improve significantly compared to the conventional gated trapping technique.  相似文献   

12.
Capillary liquid chromatography (LC) separation coupled with external accumulation Fourier transform ion cyclotron resonance (FTICR) mass spectrometry has recently been demonstrated to have significant potential for proteomics research. Accumulation of an excessive space charge external to the FTICR cell ion trap has been shown to result in increased mass measurement error, undesirable ion discrimination and/or fragmentation, potentially causing misrepresentation or incorrect assignments of lower abundance peptides in the acquired mass spectra. In this work we report on the capability of data-dependent adjustment of ion accumulation times in the course of LC separations, further referred to as automated gain control (AGC). Three different AGC approaches were evaluated based on the number of putative peptides from a tryptic digest of four casein proteins detected in the course of LC/FTICR separations. When compared with the conventional technique, AGC was found to increase, up to a factor of 3, the total number of peptides identified.  相似文献   

13.
A novel Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer has been developed for improved biomolecule analysis. A flared metal capillary and an electrodynamic ion funnel were installed in the source region of the instrument for improved ion transmission. The transfer quadrupole is divided into 19 segments, with the capacity for independent control of DC voltage biases for each segment. Restrained ion population transfer (RIPT) is used to transfer ions from the ion accumulation region to the ICR cell. The RIPT ion guide reduces mass discrimination that occurs as a result of time-of-flight effects associated with gated trapping. Increasing the number of applied DC bias voltages from 8 to 18 increases the number of ions that are effectively trapped in the ICR cell. The RIPT ion guide with a novel voltage profile applied during ion transfer provides a 3- to 4-fold increase in the number of ions that are trapped in the ICR cell compared with gated trapping for the same ion accumulation time period. A novel ICR cell was incorporated in the instrument to reduce radial electric field variation for ions with different z-axis oscillation amplitudes. With the ICR cell, called trapping ring electrode cell (TREC), we can tailor the shape of the trapping electric fields to reduce dephasing of coherent cyclotron motion of an excited ion packet. With TREC, nearly an order of magnitude increase in sensitivity is observed. The performance of the instrument with the combination of RIPT, TREC, flared inlet, and ion funnel is presented.  相似文献   

14.
The Orbitrap: a new mass spectrometer   总被引:15,自引:0,他引:15  
  相似文献   

15.
When combined with on-line separations (e.g., capillary liquid chromatography (LC)), Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) provides a powerful tool for biological applications, and particularly proteomic studies. The sensitivity, dynamic range, and duty cycle provided by FTICR-MS have been shown to be increased by ion trapping and accumulation in a two-dimensional (2D) radio-frequency (rf)-only multipole positioned externally to an FTICR cell. However, it is important that ions be detected across the desired m/z range without a significant bias. In this work we found that pressure inside the accumulation rf-quadrupole plays an important role in obtaining "unbiased" ion accumulation. Pressure optimization was performed in both pulsed and continuous modes. It was found that unbiased accumulation in a 2D rf-only quadrupole could be achieved in the pressure range of 5 x 10(-4) to 5 x 10(-3) Torr. External ion accumulation performed at the optimal pressure resulted in an increase in both the spectrum acquisition rates and dynamic range.  相似文献   

16.
A fast dynamic ion cooling technique based upon the adiabatic invariant phenomenon for Fourier transform ion cyclotron resonance mass spectrometry (FTICR) is presented. The method cools ions in the FTICR trap more efficiently, within a few hundred milliseconds without the use of a buffer gas, and results in a substantial signal enhancement. All performance aspects of the FTICR spectrum, e.g., peak intensities, mass resolution, and mass accuracy, improve significantly compared with cooling based on ion-ion interactions. The method may be useful in biological applications of FTICR, such as in proteomic studies involving extended on-line liquid chromatography (LC) separations, in which both the duty cycle and mass accuracy are crucially important.  相似文献   

17.
Accurately measured peptide masses can be used for large-scale protein identification from bacterial whole-cell digests as an alternative to tandem mass spectrometry (MS/MS) provided mass measurement errors of a few parts-per-million (ppm) are obtained. Fourier transform ion cyclotron resonance (FTICR) mass spectrometry (MS) routinely achieves such mass accuracy either with internal calibration or by regulating the charge in the analyzer cell. We have developed a novel and automated method for internal calibration of liquid chromatography (LC)/FTICR data from whole-cell digests using peptides in the sample identified by concurrent MS/MS together with ambient polydimethylcyclosiloxanes as internal calibrants in the mass spectra. The method reduced mass measurement error from 4.3 +/- 3.7 ppm to 0.3 +/- 2.3 ppm in an E. coli LC/FTICR dataset of 1000 MS and MS/MS spectra and is applicable to all analyses of complex protein digests by FTICRMS.  相似文献   

18.
An open-ended cylindrical cell with a single annular trap electrode located at the center of the excitation and detection region is demonstrated for Fourier transform ion cyclotron resonance mass spectrometry. A trapping well is created by applying a static potential to the trap electrode of polarity opposite the charge of the ion to be trapped, after which conventional dipolar excitation and detection are performed. The annular trap electrode is axially narrow to allow the creation of a potential well without excessively shielding excitation and detection. Trapping is limited to the region of homogeneous excitation at the cell centerline without the use of capacitive coupling. Perfluorotributylamine excitation profiles demonstrate negligible axial ejection throughout the entire excitation voltage range even at an effective centerline potential of only ?0.009 V. High mass resolving power in the single-trap electrode cell is demonstrated by achievement of mass resolving power of 1.45 × 106 for benzene during an experiment in which ions created in a high pressure source cubic cell are transferred to the low pressure analyzer single-trap electrode cell for detection. Such high performance is attributed to the negligible radius dependent radial electric field for ions cooled to the center of the potential well and accelerated to less than 60% of the cell radius. An important distinction of the single-trap electrode geometry from all previous open and closed cell arrangements is exhibition of combined gated and accumulated trapping. Because there is no potential barrier, all ions penetrate into the trapping region regardless of their translational energy as in gated trapping, but additional ions may accumulate over time, as in accumulated trapping. Ions of low translational kinetic energy are demonstrated to be preferentially trapped in the single-trap electrode cell. In a further demonstration of the minimal radial electric field of the single-trap electrode cell, positive voltages can be applied to the annular trap electrode as well as the source cell trap electrode to achieve highly efficient transfer of ions between cells.  相似文献   

19.
Trapping of ions in the electron beam of a FTICR mass spectrometer is investigated and a simple model describing the confinement process is presented. Detection of resistive-wall destabilization of the magnetron motion of ions in the trapped-ion cell is used to determine conditions for ion trapping within and escape from the electron beam. The model predicts a potential well that is dependent on electron beam current, energy, and dimension in defining its capacity for low energy ions. Plots of ion retention time versus ion number are consistent with a model in which ions are initially trapped in the electron beam but with increasing ion formation will eventually overcome the potential depression in the electron beam and escape into magnetron orbits. Based upon this model, expressions are derived for ion retention time which are then fit to the experimental data. The model is used to estimate ion number, initial magnetron radius and ion cloud shape and density. One example in which electron trapping is important in the FTICR experiment is in the efficient transfer of ions between dual trapped-ion cells. Ion transfer within the potential depression of the electron beam environment is shown to be virtually 100% efficient over a 10 ms interval whereas all ions are lost to collisions with the conductance limit after 2 ms when transferring without the confining aid of the electron beam. Several analytical applications of electron traps in the ICR cell are now being investigated.  相似文献   

20.
In this work we describe a micro-electrospray ionization source equipped with an atmospheric pressure external ion shutter. The solenoid-activated shutter prevents the electrospray plume from entering the inlet capillary unless triggered to the 'open' position. When in the 'closed' position, a stable electrospray plume is maintained between the electrospray ionization (ESI) emitter and the electrically isolated face of the shutter. When the shutter is triggered, a 'slice' of ions is allowed to enter the inlet capillary and is subsequently accumulated in an external ion reservoir comprised of a radio frequency only (rf-only) hexapole and a pair of electrostatic elements. Following ion accumulation in the external ion reservoir, intact molecular ions of proteins, oligonucleotides, and noncovalent complexes can be stored for extended intervals (>30 minutes) prior to being transferred to the Fourier transform ion cyclotron resonance (FTICR) trapped ion cell for mass analysis. By introducing reactive gases directly into the external ion reservoir during the storage interval, ion-molecule reactions, such as H/D exchange, can be performed at high effective pressures. This scheme obviates the need for the long reaction times and delays associated with restoring base pressure in the trapped ion cell and allows H/D exchange reactions to be conducted in a fraction of the time required using conventional in-cell exchange approaches. The back face of the shutter arm contains an elastomeric material which can be positioned to seal the inlet to the mass spectrometer resulting in lower base pressure in the ion reservoir and the FTICR cell. Additionally, it is noted that blocking the ESI plume during non-accumulation events results in reduced fouling of the source electrodes and longer times between required source cleaning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号