首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Eleven oxovanadium(IV) complexes of tetradentate Schiff bases, obtained by condensating two moles of an o-hydroxycarbonyl compound with a diamine, have been prepared and characterized by elemental analysis, m.p., and i.r. and electronic spectra. The i.r. and electronic spectra of the free ligand and the complexes are compared and discussed. The Gaussian analysis of the vis. spectra of the complexes, normally C1 or Cs, in MeCN yielded four peaks at ca. 12000, 15000, 17700 and 20000–23000cm–1, assigned to the four d-d transitions.  相似文献   

2.
Summary Some thorium(IV) complexes were synthesized with the tetradentate Schiff base ligands (N2O2 donor set) obtained by the condensation of ethylenediamine with salicylaldehyde (H2salen) or acetylacetone (H2 acacen). In all cases the neutral Schiff bases and not their anions are coordinated to the central thorium(IV) atom. The complexes have the general formula: ThL2Xa (L = H2 salen; X = Cl, Br, 1, NCS and L = lie acacen; X = Cl, 1, NCS, ClO4) or ThLX4 (L = H2 salen; X = NO3, ClO4 and L = H2 acacen; X = Br, NO3). The stoichiometry and coordination number of the complexes was determined on the basis of elemental analysis, conductivity measurements, i.r. spectra and t.g.a./d.t.a. data. The coordination number of the complexes is either 12 or 8 for the bisor monocomplexes respectively.  相似文献   

3.
The electrochemical properties of vanadyl(IV) derivatives, namely salen Schiff base complexes of the type [VO(Salen)] (5-BrSalen, 5-NO2Salen, 5-MeOSalen, salpn (bis(salicylaldehyde)-1,3-propanediamine, 5-BrSalpn, 5-NO2Salpn, 5-MeOSalpn, Me2Salen, Salophen, 5-BrSalophen, and 5-MeOSalophen) were investigated. The equatorial Schiff base ligands affect the oxidation potentials via interaction with the d-orbitals of the vanadyl metal ion. The cathodic peak potential (Epc) becomes less negative according to the sequence MeO- < H- < Br- < NO2?.  相似文献   

4.
A new series of non-disc-like oxovanadium(iv) Schiff base complexes of the type [VO((4-C n H2n+1O)2salcn)], where n?=?14, 16 or 18 and salcn is N,N -bis-salicylidene-1,2-cyclohexadiamine, containing 4-substituted alkoxy tails in the side aromatic rings, have been synthesised and their mesogenic properties investigated. The compounds were characterised by FT–IR, 1H NMR, 13C NMR, UV–Vis and FAB mass spectrometry. The mesomorphic behaviour of the compounds was studied using polarised optical microscopy and differential scanning calorimetry. The molecular organisation in the mesophase was determined by X-ray diffraction. It was found that the ligands did not show mesogenic behaviour, but their complexes exhibited a thermally stable enantiotropic highly ordered three-dimensional plastic mesophase with a columnar structure in the extended temperature range 155–166°C. The clearing temperature of the complexes was found to be lower than in the structurally analogous copper complexes. A density functional theory study was carried out using DMol3 at BLYP/DNP level to obtain a stable optimised structure. A square pyramidal geometry for the vanadyl complexes has been proposed.  相似文献   

5.
Summary Complexes of the X2Ti(SB) type, where X is OMe, OEt and OPr-i and SB is the dianion of salicylaldehyde-2-hydroxyanil (H2SAP), acetylacetone-2-hydroxyanil (H2AAP) and acetylacetone-2-mercaptoanil (H2ASP), have been prepared and characterized by means of conductivity, molecular weight, i.r., n.m.r and mass spectral measurements. The ONO and ONS donor ligands are terdentate and the titanium(IV) atom attains six-coordinationvia dimerization of the complexes. The tendency of (i-PrO)2Ti(AAP), where AAP is the dianion of acetylacetone-2-hydroxyanil, to become monomeric and to disproportionate to Ti(AAP)2 and Ti(OPr-i)4 was also investigated. Spectral data are also presented for the octahedral complexes of the Ti(SB)2 type, where SB is the dianion of H2SAP, H2AAP, H2ASP or of the related ONO donor ligands salicylaldehyde-2-hydroxyethylimine (H2SAE), salicylaldehyde-3-hydroxypropylimine (H2SPA), and diisopropylethanolamine (H2DIP).Presented in part at the 166th ACS National Meeting, Chicago, Illinois, Aug. 26–31, 1973; No. INORG. 50.  相似文献   

6.
7.
Summary Zr(acac)4 undergoes ligand exchanges with various tri- and tetradentate Schiff base ligands, forming compounds of the Zr(L)2 type (H2L=tetradentate H2Sal2en, H2Sal2pn, H2Sal2 o-phen and the tridentate H2SAP) and Zr(acac)2L (H2L=H2SAN. H2SAE). Upon reaction with a combination of tri- and tetradentate ligands, Zr(acac)4 yields Zr(L)(L) complexes (H2L=H2Sal2en or H2Sal2 o-phen; H2L=H2SAN, H2SAE, or H2SAP), which have been characterised by analytical data, m.ps, electrical conductivities, i.r. and n.m.r (1H and13C) spectra, they have a coordination number of 6, 7 or 8.  相似文献   

8.
Summary Complexes of pentachlorotantalum with the Schiff bases: bis(vanillin)benzidine, bis(vanillin)-o-dianisidine, bis(acetylacetone)benzidine, bis(p-dimethylaminobenzaldehyde)-o-dianisidine, bis(anisaldehyde)-1, 3-propanediamine and bis(p-dimethylaminobenzaldehyde)-o-phenylenediamine have been prepared and characterized by molar conductance, decomposition temperature, elemental and t.g. analyses and i.r. spectral measurements. The conductances reveal that pentachlorotantalum (1 mole) interacts with all the ligands (1 mole), all five chloride ions thus forming simple adducts. A comparative study of the i.r. spectra of the parent ligands and their complexes allows the coordination sites to be ascertained. The studies show that tantalum(V) chloride prefers to form complexes of high coordination number.  相似文献   

9.
10.
The catalytic epoxidation of styrene using urea-hydrogen peroxide and heterotrinuclear Cu(II) complexes with general formula (ML n )2Cu(acac)2, where n = 1–3 and M = VO2+ or Mn2+ is reported. Schiff base complexes ML n involving a 3,4-diaminopyridine bridge with free coordination site were used as the ligand, where (Ln)2− is [(5-x-Sal)2Py]2 and x = H, Br or NO2. The complexes were characterized by physico-chemical and spectroscopic methods. The electrochemical properties of M were modified upon trinuclear complex formation. The trinuclear complexes show high catalytic activity, with up to 86% conversion and 93% selectivity, while no catalytic properties were observed for the monomeric complexes. The catalyst could be reused with some loss of activity.  相似文献   

11.
The reactions of a few bifunctional and tridentate Schiff bases with titanium-(IV) and zirconium(IV) isopropoxides in equimolar and bimolar ratios are described. The resulting compounds have been obtained in almost quantitative yields and are of the general formulae M(SB)x(OPri)4?2X (where M = Ti or Zr; SB- = anion of the Schiff base SBH2 and x = 1 or 2). Their molecular weights have been determined ebullioscopically and IR spectra recorded.  相似文献   

12.
Transition Metal Chemistry - Twenty-four oxidovanadium(IV,V) complexes with tridentate Schiff base ligands based on 5-nitrosalicylaldehyde, 5-methoxysalicylaldehyde, or 5-sulfosalicylaldehyde and...  相似文献   

13.
Summary Hafnium(IV) complexes have been prepared by the reactions of hafnium(IV) isopropoxide isopropanol with Schiff bases [bis(salicylaldehyde)hydrazine] (Sal-AH2), (bis(o-hydroxyacetophenone)hydrazine] (Acp-AH2), [bis(resacetophenone)hydrazine] (Res-AH2), [bis(salicylaldehyde)ethylenediimine) (SaleneH2), [bis(o-hydroxyacetophenone)ethylenediimine] (AcpeneH2) and [bis(salicylaldehyde)o-phenylenediimine] (SalpheneH2) (derived from salicylaldehyde,o-hydroxyacetophenone, resacetophenone and diamines) in appropriate molar ratios using benzene as solvent. The complexes [Hf(OPr-i)2(SB)] and [Hf(SB)2] (where SB2– represents the dianion of the Schiff base) are reported. The complexes of Sal-A, Acp-A and Res-A are 5-and 6-coordinate while those of salene, acpene and salphene are 6-and 8-coordinate. The Schiff bases draw on Sal-A, Acp-A and Res-A are tridentate and salene, acpene and salphene are tetradentate. The mode of bonding through nitrogen and oxygen and the stereochemistry of the complexes are discussed in relation to the elemental analyses and spectra (electronic, infrared and nuclear magnetic resonance).  相似文献   

14.
With the goal of preparing Ti(IV) complexes bearing a sulfur-based redox function of possible use in electrocatalytic oxidations of alcohols at electrode surfaces, a series of seven 2,2'-dithiodianiline Schiff-base derivatives, including two new variations, were tested in reactions with Ti(OR)(4) (R = (i)Pr, (t)Bu). Instead of the expected dimetallic products of general formula [LTi(OR)(2)](2), mononuclear species LTi(OR)(2) were obtained, confirmed by crystallographic determinations to have an unprecedented, symmetrical, and macrocyclic arrangement with four-point binding to the metal center and with the disulfide moieties remaining uncoordinated. Cyclic voltammetry performed in CH(2)Cl(2) displayed oxidations at potentials useful for fuel cells (+1.1-1.5 V vs Ag/AgCl), but despite the uncoordinated disulfide moieties, the complexes were reticent to engage in reduction processes.  相似文献   

15.
Summary The synthesis, characterization and geometrical features of penta- and hexa-coordinated oxovanadium(V) complexes, [(VOCl2)(SB)] and [(VOCl)(SB)2] (where SBH represents a monobasic Schiff base) are described. The isolated products are coloured, crystalline monomeric solids, which are nonelectrolytes. On the basis of spectral (i.r.,1H n.m.r. and u.v.) and magnetic susceptibility measurements distorted trigonal bipyramidal and octahedral geometries are proposed for [(VOCl2)(SB)] and for the [(VOCl)(SB)2] type complexes, respectively.  相似文献   

16.
In this article the kinetics of the interaction between the teteraaza Schiff bases as donor with organotin(IV)chlorides as acceptor was studied in acetonitrile. Teteraaza Schiff bases are (Me4‐Bzo2[14]tetraeneN4) (tmtaa), (Me4‐4‐CH3Bzo2[14]tetraeneN4) (Metmtaa), (Me4‐4‐ClBzo2[14]tetraeneN4) (Cltmtaa), i.e., [(Me4‐Bzo2[14]tetraeneN4)] means that (5,7,12,14‐tetramethyldibenzo[b,i][1,4,8,11] tetraazacyclotetradecine) (tmtaa) and organotin(IV)chlorides are methyltin(IV) trichloride, phenyltin(IV)trichloride, dimethyltin (IV)dichloride, diphenyltin(IV) dichloride, and dibutyltin(IV)dichloride. The kinetic parameters and the second‐order k2 rate constants show the donor properties of tetraaza Schiff bases as Me4‐4‐CH3Bzo2[14]tetraeneN4 > Me4‐Bzo2[14]tetraeneN4 > Me4‐4‐ClBzo2[14]tetraeneN4 and also the acceptor properties of organotin(IV)chlorides as PhSnCl3 > MeSnCl3 > Ph2SnCl2 > Me2SnCl2 > Bu2SnCl2. An excellent linearity of kobs vs. the molar concentration of the acceptor, the high span of k2 values, the large negative values of ΔS, and the low ΔH values suggest an associative (A) mechanism for the acceptor–donor interaction. © 2011 Wiley Peiodicals, Inc. Int J Chem Kinet 43: 247–254, 2011  相似文献   

17.
Three mononuclear organotin(IV) complexes supported by Schiff bases have been synthesized. The complexes [(C6H5)2Sn(L)] ( 1 ), [(t‐Bu)2Sn(L)] ( 2 ) and [(t‐Bu)2Sn(L')] ( 3 ) (L, L' = deprotonated Schiff bases) were obtained in good yield by the reaction of Schiff bases H 2 L or H 2 L′ with corresponding diorganotin dichlorides respectively. All newly synthesized complexes were characterized by means of FT‐IR spectroscopy, elemental analysis and multinuclear (1H, 13C and 119Sn) NMR spectroscopy. In addition, single crystal X‐ray diffraction analyses were employed to establish the solid state molecular structures of these complexes. The structures of 1 – 3 reveal that all complexes are mononuclear with a five‐coordinated tin(IV) centre in it. The absorption and emission properties of all complexes have been investigated. Moreover, cytotoxicity and fluorescence cell imaging studies of theses complexes have been performed.  相似文献   

18.
The synthesis of monomeric pentacoordinated diorganotin(IV) complexes derived from pyridoxal hydrochloride and 4‐ or 5‐R ‐substituted ortho ‐aminophenols is described. The complexes were characterized using UV–visible, infrared, mass, 1H NMR, 13C NMR and 119Sn NMR spectral techniques. The molecular structure of three complexes was established using X‐ray diffraction: 3b and 3d show a distorted trigonal bipyramidal geometry, in which the basal plane is defined by the butyl groups and the iminic nitrogen atom, whereas the oxygen atoms from the aromatic ring occupy axial positions; in contrast, complex 3e exhibits a square pyramidal geometry. The cytotoxic activity of all complexes against human cell lines U‐251 (glioblastoma), K‐562 (chronic myelogenous leukemia), HCT‐15 (human colorectal cancer), MCF‐7 (human breast cancer) and SKLU‐1 (non‐small‐cell lung cancer) was evaluated, and the inhibitory percentage values indicated higher activity than the reference standard, cisplatin. Acute toxicity studies were performed in vivo for the prepared complexes to determine the lethal medium dose (LD50) after intraperitoneal administration to mice.  相似文献   

19.
Herein we report the synthesis and characterization of trans-[RuIICl2(PPh3)3] with potentially tridentate Schiff bases derived from 5,6-diamino-1,3-dimethyl uracil (H2ddd) and two 2-substituted aromatic aldehydes. In the diamagnetic ruthenium(II) complexes, trans-[RuCl(PPh3)2(Htdp)] (1) {H2tdp = 5-((thiophen-3-yl)methyleneamino)-6-amino-1,3-dimethyluracil} and trans-[RuCl(PPh3)2(Hsdp)] (2) {H2sdp = 5-(2-(methylthio)benzylideneamino)-6-amino-1,3-dimethyluracil}, the Schiff base ligands (i.e. Htdp and Hsdp) act as mono-anionic tridentate chelators. Upon reacting 5-(2-hydroxybenzylideneamino)-6-amino-1,3-dimethyluracil (H3hdp) with the metal precursor, the paramagnetic complex, trans-[RuIVCl2(ddd)(PPh3)2] (3), was isolated, in which the bidentate dianionic ddd co-ligand was formed by hydrolysis. The metal complexes were fully characterized via multinuclear NMR-, IR-, and UV–Vis spectroscopy, single crystal XRD analysis and conductivity measurements. The redox properties were probed via cyclic voltammetry with all complexes exhibiting comparable electrochemical behavior with half-wave potentials (E½) at 0.70 V (for 1), 0.725 V (for 2), and 0.68 V (for 3) versus Ag|AgCl, respectively. The presence of the paramagnetic metal center for 3 was confirmed by ESR spectroscopy.  相似文献   

20.
Summary New neutral platinum complexes of Schiff bases or their hydrated derivatives were prepared and a new path to mixed ligand platinum(II) complexes is proposed. Reactions of [PtCl4]2– with multidentate Schiff bases give chelates which react further, resulting in cis-coordinated mixed N-donor ligand complexes. Structures are proposed on the basis of chemical analyses, electrical conductivities and i.r. studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号