首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Two novel three-dimensional coordination polymers [Cu(6)(N(3))(12)(N-Eten)(2)](n) (1) (N-Eten=N-ethylethylenediamine) and {[Cu(9)(N(3))(18)(1,2-pn)(4)].H(2)O}(n) (2) (1,2-pn=1,2-diaminopropane) have been synthesized by the self-assembly reactions of Cu(NO(3))(2).3H(2)O, NaN(3) and small diamine ligands. Their molecular structures were determined by single-crystal X-ray diffraction. Complex 1 is composed of a neutral 3D coordination framework based on unprecedented hexanuclear copper(ii) clusters which features three types of bridging modes for azide (mu-1,1, mu-1,3 and mu-1,1,3). Complex 2 is a novel 3D coordination polymer featuring octanuclear copper-azido clusters and [Cu(diamine)(2)](2+) units which are linked by azido bridges. Magnetic studies for complex show ferromagnetic ordering at 3.5 K, where the azido bridges mediate ferromagnetic coupling between adjacent Cu(II) ions. The magnetic data for 1 were fitted to a uniform hexanuclear copper model which yielded g=2.21, J=6.26 cm(-1), zJ'=0.39 cm(-1). Complex 2 shows ferromagnetic coupling in the octanuclear unit and antiferromagnetic interaction between neighboring units.  相似文献   

2.
Gao EQ  Bai SQ  Wang CF  Yue YF  Yan CH 《Inorganic chemistry》2003,42(25):8456-8464
Three one-dimensional (1D) azido-bridged coordination polymers of formula [Cu(L)(N3)2]n (1), [Cu2(Me-L)(N3)4]n (2), and [Mn(L)(N3)2]n (3) have been synthesized and structurally characterized, and their magnetic properties studied, where L and Me-L are 2-(pyrazol-1-ylmethyl)pyridine and 2-(3-methylpyrazol-1-ylmethyl)pyridine, respectively. Compound 1 consists of 1D chains in which the Cu(II) ions with a square pyramidal geometry are alternately bridged by an end-to-end (EE) and an end-on (EO) azido ligands, both adopting a basal-apical disposition. Compound 2 exhibits an unprecedented chain topology built via three different kinds of EO azido bridges. Four Cu(II) ions in the square pyramidal environment are alternately bridged by single and double EO bridges to form a tetranuclear cyclic ring, and neighboring rings are interlinked by double EO bridges to generate a "chain of rings". The intraannular double azido ions are disposed between metal ions in a basal-basal fashion, and the other two kinds of azido ions adopt the basal-apical disposition. Compound 3 consists of 1D concave-convex chains in which cis-octahedrally coordinated Mn(II) ions are alternately bridged by double EE and double EO bridges. There exist pi-pi interactions between the ligands bound to the neighboring Mn(II) ions bridged by the EO bridges. Temperature- and field-dependent magnetic analyses reveal alternate ferromagnetic interactions for 1, dominating ferromagnetic interactions for 2, and alternating ferro- and antiferromagnetic interactions through the EO and EE azido bridges for 3, respectively.  相似文献   

3.
Four new copper(II) complexes of formula [Cu(2)(tppz)(dca)(3)(H(2)O)].dca.3H(2)O (1), [Cu(5)(tppz)(N(3))(10)](n)() (2), [[Cu(2)(tppz)(N(3))(2)][Cu(2)(N(3))(6)]](n)() (3), and [Cu(tppz)(N(3))(2)].0.33H(2)O (4) [tppz = 2,3,5,6-tetrakis(2-pyridyl)pyrazine and dca = dicyanamide anion] have been synthesized and structurally characterized by X-ray diffraction methods. The structure of complex 1 is made up of dinuclear tppz-bridged [Cu(2)(tppz)(dca)(3)(H(2)O)](+) cations, uncoordinated dca anions, and crystallization water molecules. The copper-copper separation across bis-terdentate tppz is 6.5318(11) A. Complex 2 is a sheetlike polymer whose asymmetric unit contains five crystallographically independent copper(II) ions. These units are building blocks in double chains in which the central part consists of a zigzag string of copper atoms bridged by double end-on azido bridges, and the outer parts are formed by dinuclear tppz-bridged entities which are bound to the central part through single end-on azido bridges. The chains are furthermore connected through weak, double out-of-plane end-on azido bridges, yielding a sheet structure. The intrachain copper-copper separations in 2 are 6.5610(6) A across bis-terdentate tppz, 3.7174(5) and 3.8477(5) A across single end-on azido bridges, and from 3.0955(5) to 3.2047(7) A across double end-on azido bridges. The double dca bridge linking the chains into sheets yields a copper-copper separation of 3.5984(7) A. The structure of 3 consists of centrosymmetric [Cu(2)(tppz)(N(3))(2)](2+) and [Cu(2)(N(3))(6)](2)(-) units which are linked through axial Cu.N(azido) (single end-on and double end-to-end coordination modes) type interactions to afford a neutral two-dimensional network. The copper-copper separations within the cation and anion are is 6.5579(5) A (across the bis-terdentate tppz ligand) and 3.1034(6) A (across the double end-on azido bridges), whereas those between the units are 3.6652(4) A (through the single end-on azido group) and 5.3508(4) A (through the double end-to-end azido bridges). The structure of complex 4 is built of neutral [Cu(tppz)(N(3))(2)] mononuclear units and uncoordinated water molecules. The mononuclear units are grouped by pairs to give a rather short copper-copper separation of 3.9031(15) A. The magnetic properties of 1-4 have been investigated in the temperature range 1.9-300 K. The magnetic behavior of complexes 1 and 4 is that of antiferromagnetically coupled copper(II) dimers with J = -43.7 (1) and -2.1 cm(-)(1) (4) (the Hamiltonian being H = -JS(A).S(B)). An overall ferromagnetic behavior is observed for complexes 2 and 3. Despite the structural complexity of 2, its magnetic properties correspond to those of magnetically isolated tppz-bridged dinuclear copper(II) units with an intermediate antiferromagnetic coupling (J = -37.5 cm(-)(1)) plus a ferromagnetic chain of hexanuclear double azido-bridged copper(II) units (the values of the magnetic coupling within and between the hexameric units being +61.1 and +0.0062 cm(-)(1), respectively). Finally, the magnetic properties of 3 were successfully analyzed through a model of a copper(II) chain with regular alternating of three ferromagnetic interactions, J(1) = +69.4 (across the double end-on azido bridges in the equatorial plane), J(2) = +11.2 (through the tppz bridge), and J(3) = +3.4 cm(-)(1) (across the single end-on azido bridge).  相似文献   

4.
Four new neutral copper-azido polymers [Cu(6)(N(3))(12)(aem)(2)](n)(1), [Cu(6)(N(3))(12)(dmeen)(2)(H(2)O)(2)](n) (2), [Cu(6)(N(3))(12)(N,N'-dmen)(2)](n) (3), and [Cu(6)(N(3))(12)(hmpz)(2)](n) (4) [aem = 4-(2-aminoethyl)morpholine; dmeen = N,N-dimethyl-N'-ethylethylenediamine; N,N'-dmen = N,N'-dimethylethylenediamine and hmpz = homopiperazine] have been synthesized by using 0.33 mol equiv of the chelating diamine ligands with Cu(NO(3))(2)·3H(2)O/CuCl(2)·2H(2)O and an excess of NaN(3). Single crystal X-ray structures show that the basic unit of these complexes, especially 1-3, contains very similar Cu(II)(6) building blocks. But the overall structures of these complexes vary widely in dimensionality. While 1 is three-dimensional (3D) in nature, 2 and 3 have a two-dimensional (2D) arrangement (with different connectivity) and 4 has a one-dimensional (1D) structure. Cryomagnetic susceptibility measurements over a wide range of temperature exhibit dominant ferromagnetic behavior in all the four complexes. The experimental susceptibility data have been analyzed by some theoretical model equations.  相似文献   

5.
Wen HR  Wang CF  Song Y  Zuo JL  You XZ 《Inorganic chemistry》2005,44(24):9039-9045
One-dimensional chiral copper(II) and manganese(II) coordination polymers with single asymmetric end-to-end (EE) azide bridges, [Cu(R-L)2(N3)]n(ClO4)n (1), [Cu(S-L)2 (N3)]n(ClO4)n (2), [Mn(R-L)2(N3)]n(ClO4)n (3), and [Mn(S-L)2(N3)]n(ClO4)n (4) (R-L or S-L = R- or S-pyridine-2-carbaldehyde-imine), have been synthesized, using azide ions as bridging groups and chiral Schiff bases as auxiliary ligands, and characterized. The crystal structure determination of complexes 1 and 2 reveals the formation of one-dimensional chiral chains, in which the central Cu(II) ion is six-coordinate in the form of an elongated octahedron. Complex 3 consists of chiral helical polymeric chains, in which the central Mn(II) has a slightly distorted octahedral geometry. They all crystallize in the chiral space group P2(1). Complexes 1 and 2 are rare examples that exhibit ferromagnetic interaction between copper(II) ions through the single end-to-end azido bridge. Fitting the susceptibility data for 1 using a 1D uniform chain model led to the parameters J = 0.70(3) cm(-1), g = 2.06(2), and zj' = 0.07(2) cm(-1). The magnetic studies on 3 and 4 show that there is weak antiferromagnetic coupling between the manganese(II) ions.  相似文献   

6.
The coordination polymers [(Cu(N(3))(2))(2)Cu(N(3))(2)(methylpyrazine)(2)](n) 1 and [Cu(4-bromopyridine)(N(3))(2)](n) 2, were prepared from NaN(3), Cu(NO(3))(2).3H(2)O and nitrogen-containing heterocycles. 1 contains a three- and four-connected 3D (4.10(2))(2)(4(2).10(4))-dmd-net based on tetrahedral and trigonal planar nodes, whereas 2 is a sheet-structure formed by a uninodal three-connected 8(2).4 2D-net with additional BrBr (mean 3.903(2) A) and BrN(azide) (3.035(5) A) contacts. Both compounds contain end-on-type azide bridges, and 2 has in addition one end-to-end bridge as well. The corresponding magnetic interactions are J(1,2) = +14.9(6) cm(-1) for the end-on azido interactions in 1 with an additional -1.7 cm(-1) coupling through the pyrazine, and J(1) = 36(6) cm(-1) for the end-on azido interactions and J(2) = 2.5(1) cm(-1) for the orthogonal end-to-end azido interactions found in 2.  相似文献   

7.
Three new coordination polymers [Cu5(N3)10(en)2]n (1), [Cu6(N3)12(en)4]n (2), and [Cu4(N3)8(en)4]n (3) have been synthesized in a controlled manner by treatment of a 1:2 mixture of Cu(NO3)2 and NaN3 with varying amount of ethylenediamine (en). Single-crystal structure analyses clearly indicated that the puckered Cu4 biscubane unit in 1 gradually opens to a slightly more open Cu4 macrocyclic unit in 2 when more en approaches to the Cu4 core. Upon addition of further en, an open Cu4 linear secondary building unit was obtained in complex 3. Complex 1 contains four different kinds of bridging modes of the azide anion and is a complicated 3D polymer. Similarly, complexes 2 and 3 are 3D and 2D polymers, respectively, containing three different kinds of bridging azides. Complex 3 contains two very rare cis end-to-end (EE) and single-end-on (EO) azido modes. Structural transformation from 1 to 3 was monitored and explained qualitatively. Variable-temperature magnetic studies in the temperature range of 300-2 K reveal the existence of dominant ferromagnetic behavior in all the three cases with a metamagnetic-type behavior in complex 1 with the critical field of transition at 0.8 T. The purity of all the complexes were established by elemental analyses, as well as by the powder XRD patterns that matched well with the expected patterns from the single-crystal structure analysis.  相似文献   

8.
Reaction of Cu(II), [gamma-SiW10O36]8-, and N3- affords three azido polyoxotungstate complexes. Two of them have been characterized by single-crystal X-ray diffraction. Complex KNaCs10[{gamma-SiW10O36Cu2(H2O)(N3)2}2].26H2O (1) is obtained as crystals in few hours after addition of CsCl. This linear tetranuclear Cu(II) complex consists in two [gamma-SiW10O36Cu2(H2O)(N3)2]6- units connected through two W=O bridges. When the filtrate is left to stand for one night, a new complex is obtained. From both elemental analysis and IR spectroscopy, it has been postulated that this compound could be formulated K(1.5)Cs(5.5)[SiW10O37Cu2(H2O)2(N3)].14 H2O (1 a), showing the loss of one azido ligand per polyoxometalate unit. Finally, when no cesium salt is added to the reaction medium, the nonanuclear complex K12Na7[{SiW8O31Cu3(OH)(H2O)2(N3)}3(N3)].24 H2O (2) is obtained after three days. Compound 2 crystallizes in the R3c space group and consists in three {Cu3} units related by a C3 axis passing through the exceptional mu-1,1,1,3,3,3-azido bridging ligand. Each trinuclear Cu(II) unit is embedded in the [gamma-SiW8O31]10- ligand, an unprecedented tetravacant polyoxometalate, showing that partial decomposition of the [gamma-SiW10O36]8- precursor occurs with time in such experimental conditions. Magnetically, complex 1 behaves as two isolated {Cu2(mu(1,1)-N3)2} pairs in which the metal centers are strongly ferromagnetically coupled (J = +224 cm(-1), g = 2.20), the coupling through the W=O bridges being negligible. The magnetic behavior of complex 2 has also been studied. Relatively weak ferromagnetic couplings (J1 = +1.0 cm(-1), J2 = +20.0 cm(-1), g=2.17) have been found inside the {Cu3} units, while the intertrimeric magnetic interactions occurring through the hexadentate azido ligand have been found to be antiferromagnetic (J3 = -5.4 cm(-1)) and ferromagnetic (J4 = +1.3 cm(-1)) with respect to the end-to-end and end-on azido-bridged Cu(II) pairs, respectively.  相似文献   

9.
Gao EQ  Bai SQ  Yue YF  Wang ZM  Yan CH 《Inorganic chemistry》2003,42(11):3642-3649
Five Mn(II)[bond]azido coordination polymers of formula [Mn(L)(N(3))(2)](n) have been synthesized and crystallographically characterized, and their magnetic properties studied, where L's are the bidentate Schiff bases obtained from the condensation of pyridine-2-carbaldehyde with aniline (1) and its derivatives p-toluidine (2), m-toluidine (3), p-chloroaniline (4), and m-chloroaniline (5). All the complexes consist of the zigzag Mn(II)[bond]azido chains in which the Mn(II) ions are alternately bridged by two end-to-end (EE) and two end-on (EO) azido ligands, the cis-octahedral coordination being completed by the two nitrogen atoms of the Schiff base ligands. Compound 2 is unique in that the Mn[bond](EE-N(3))(2)[bond]Mn ring adopts an unusual twist conformation with the two linear azido bridges crossing each other. By contrast, the rings in the other compounds take the usual chair conformation with the two azido bridges parallel. The double EO bridging fragments in the complexes are similar with the bridging angles (Mn[bond]N[bond]Mn) ranging from 99.6 degrees to 104.0 degrees. Magnetic analyses reveal that alternating ferro- and antiferromagnetic interactions are mediated through the alternating EO and EE azido bridges with the J(F) and J(AF) parameters in the ranges of 4.1-8.0 and -11.8 to -15.4 cm(-1), respectively. Finally, the magnetostructural correlations are investigated. The present complexes follow the general trend that the ferromagnetic interaction through the double EO bridge increases with the Mn[bond]N[bond]Mn bridging angle, while the antiferromagnetic interaction through the double EE bridge is dependent on the distortion of the Mn[bond](N(3))(2)[bond]Mn ring from planarity toward the chair conformation and the Mn[bond]N[bond]N angle.  相似文献   

10.
Zhang XM  Wang YQ  Song Y  Gao EQ 《Inorganic chemistry》2011,50(15):7284-7294
Three transition-metal coordination polymers with azide and/or carboxylate bridges have been synthesized from 4-(3-pyridyl)benzoic acid (4,3-Hpybz) and 4-(4-pyridyl)benzoic acid (4,4-Hpybz) and characterized by X-ray crystallography and magnetic measurements. Compound 1, [Cu(4,3-pybz)(N(3))](n), consists of 2D coordination networks in which the uniform chains with (μ-EO-N(3))(μ-COO) double bridges are cross-linked by the 4,3-pybz ligands. Compound 2, [Cu(2)(4,4-pybz)(3)(N(3))](n)·3nH(2)O, consists of 2-fold interpenetrated 3D coordination networks with the α-Po topology, in which the six-connected dinuclear motifs with mixed (μ-EO-N(3))(μ-COO)(2) (EO = end-on) triple bridges are linked by the 4,4-pybz spacers. Compound 3, [Mn(4,4-pybz)(N(3))(H(2)O)(2)](n), contains 2D manganese(II) coordination networks in which the chains with single μ-EE-N(3) bridges (EE = end-to-end) are interlinked by the 4,4-pybz ligands, and the structure also features a 2D hydrogen-bonded network in which Mn(II) ions are linked by double triatomic bridges, (μ-EE-N(3))(O-H···N) and (O-H···O)(2). Magnetic studies indicated that the mixed azide and carboxylate bridges in 1 and 2 induce ferromagnetic coupling between Cu(II) ions and that 3 features antiferromagnetic coupling through the EE-azide bridge. In addition, compound 1 exhibits antiferromagnetic ordering below 6.2 K and behaves as a field-induced metamagnet. A magnetostructural survey indicates a general trend that the ferromagnetic coupling through the mixed bridges decreases as the Cu-N-Cu angle increases.  相似文献   

11.
Four new neutral copper-azido polymers [Cu(4)(N(3))(8)(Me-hmpz)(2)](n) (1), [Cu(4)(N(3))(8)(men)(2)](n) (2), [Cu(5)(N(3))(10)(N,N-dmen)(2)](n) (3) and [Cu(5)(N(3))(10)(N,N'-dmen)(5)](n) (4) [Me-hmpz = 1-methylhomopiperazine; men = N-methylethylenediamine; N,N-dmen = N,N-dimethylethylenediamine and N,N'-dmen = N,N'-dimethylethylenediamine] have been synthesized by using various molar equivalents of the chelating diamine ligands with Cu(NO(3))(2)·3H(2)O and an excess of NaN(3). Single-crystal X-ray structures show that the basic asymmetric units of 1 and 2 are very similar, but the overall 1D structures were found to be quite different. Complex 3 with a different composition was found to be 2D in nature, while the 1D complex 4 with 1 : 1 metal to diamine ratio presented several new structural features. Cryomagnetic susceptibility measurements over a wide range of temperature were corroborated with density functional theory calculations (B3LYP functional) performed on the complexes 1-3 to provide a qualitative theoretical interpretation of their overall magnetic behavior.  相似文献   

12.
A novel azide-bridged copper(Ⅱ) coordination polymer, [Cu3(NITpPy)4(N3)6]n (NITpPy = 4-pyridyl-4,4,5,5-tetramethylimidazline-3-oxide-1-oxyl), was structurally and magnetically characterized. It crystallizes in the triclinic space group P with a = 7.6932(10), b = 14.5556(19), c = 16.122(2) , α = 108.443(2), β = 95.251(2), γ = 104.236(2)°, V = 1631.7(4) 3, C48H64Cu3N30O8, Mr = 1379.87, Z = 1, Dc = 1.404 g/cm3, μ(MoKα) = 1.041 mm-1, F(000) = 713, the R = 0.0510 and wR = 0.1185 for 4285 observed reflections with I > 2σ(I). X-ray analysis reveals that the Cu(Ⅱ) ions are linked by nitrogen atom of μ1,1 azido ligands to form a Cu-Cu-Cu unit. The units are linked by μ1,3 azido ligands through a bridging style to form a one-dimensional coordination polymer. The variable-temperature magnetic susceptibility data of the complex show ferromagnetic interactions in the complex.  相似文献   

13.
Three new one-dimensional nickel(II) complexes with the formulas trans-[Ni(N-Eten)2(mu1.3-N3)]n(ClO4)n (1), trans-[Ni(N-Eten)2(mu1.3-N3)]n(PF6)n (2), and cis-[Ni(N-Eten)(mu1.1-N3)2]n (3) (N-Eten = N-Ethylethylenediamine) were synthesized and characterized. Complex 1 has the P2(1)/c space group and consists of a structurally and magnetically alternating one-dimensional antiferromagnetic system with end-to-end azido bridges. Compound 2 has the P1 space group and has alternate units in its structure but consists of a magnetically uniform one-dimensional antiferromagnetic system with end-to-end azido bridges. Complex 3 has the I2/a space group and may be described as a structurally and magnetically alternating one-dimensional ferromagnetic system with double azido bridged ligands in an end-on coordination mode. The chi(M)T versus T plots for compound 3 suggest an intramolecular ferromagnetic interaction between adjacent NiII ions and metamagnetism at low temperature (below 10 K). The magnetization measurements versus applied field confirm this metamagnetic ordering. In order to describe the magnetic data of this compound we developed a general formula for the magnetic susceptibility of the isotropic ferro-ferromagnetic S = 1 Heisenberg chain in terms of the alternation parameter alpha (= J2/J1); this assumed a variation of chi(M)T versus the length N.  相似文献   

14.
Gu ZG  Song Y  Zuo JL  You XZ 《Inorganic chemistry》2007,46(23):9522-9524
Two homochiral two-dimensional brick-wall complexes with only end-on azido bridges, [Cu3((R)-phea)2(N3)6]n (1) and [Cu3((S)-phea)2(N3)6]n (2) (phea=1-phenylethylamine), have been synthesized and structurally characterized. Magnetic studies show that both complexes are chiral ferromagnets with the magnetic transition temperature at 5.5 K.  相似文献   

15.
Four new neutral copper azido polymers, [Cu(4)(N(3))(8)(L(1))(2)](n) (1), [Cu(4)(N(3))(8)(L(2))(2)](n) (2), [Cu(4)(N(3))(8)(L(3))(2)](n) (3), and [Cu(9)(N(3))(18)(L(4))(4)](n) (4) [L(1-4) are formed in situ by reacting pyridine-2-carboxaldehyde with 2-[2-(methylamino)ethyl]pyridine (mapy, L(1)), N,N-dimethylethylenediamine (N,N-dmen, L(2)), N,N-diethylethylenediamine (N,N-deen, L(3)), and N,N,2,2-tetramethylpropanediamine (N,N,2,2-tmpn, L(4))], have been synthesized by using 0.5 mol equiv of the chelating tridentate ligands with Cu(NO(3))(2)·3H(2)O and an excess of NaN(3). Single-crystal X-ray structures show that the basic unit of these complexes, especially 1-3, contains very similar Cu(II)(4) building blocks. The overall structure of 3 is two-dimensional, while the other three complexes are one-dimensional in nature. Complex 1 represents a unique example containing hemiaminal ether arrested by copper(II). Complexes 1 and 2 have a rare bridging azido pathway: both end-on and end-to-end bridging azides between a pair of Cu(II) centers. Cryomagnetic susceptibility measurements over a wide range of temperature exhibit dominant ferromagnetic behavior in all four complexes. Density functional theory calculations (B3LYP functional) have been performed on complexes 1-3 to provide a qualitative theoretical interpretation of their overall ferromagnetic behavior.  相似文献   

16.
Using the achiral diazine ligands bearing two bidentate pyridylimino groups as sources of conformational chirality, five azido-bridged coordination polymers are prepared and characterized crystallographically and magnetically. The chirality of the molecular units is induced by the coordination of the diazine ligands in a twisted chiral conformation. The use of L(1) (1,4-bis(2-pyridyl)-1-amino-2,3-diaza-1,3-butadiene) and L(2) (1,4-bis(2-pyridyl)-1,4-diamino-2,3-diaza-1,3-butadiene) induces spontaneous resolution, yielding conglomerates of chiral compounds [Mn(3)(L(1))(2)(N(3))(6)](n) (1) and [Mn(2)(L(2))(2)(N(3))(3)](n)(ClO(4))(n).nH(2)O (2), respectively, where triangular (1) or double helical (2) chiral units are connected into homochiral one-dimensional (1D) chains via single end-to-end (EE) azido bridges. The chains are stacked via hydrogen bonds in a homochiral fashion to yield chiral crystals. When L(3) (2,5-bis(2-pyridyl)-3,4-diaza-2,4-hexadiene) is employed, a partial spontaneous resolution occurs, where binuclear chiral units are interlinked into fish-scale-like homochiral two-dimensional (2D) layers via single EE azido bridges. The layers are stacked in a heterochiral or homochiral fashion to yield simultaneously a racemic compound, [Mn(2)(L(3))(N(3))(4)](n) (3a), and a conglomerate, [Mn(2)(L(3))(N(3))(4)](n).nMeOH (3b). On the other hand, the ligand without amino and methyl substituents (L(4), 1,4-bis(2-pyridyl)-2,3-diaza-1,3-butadiene) does not induce spontaneous resolution. The resulting compound, [Mn(2)(L(4))(N(3))(4)](n) (4), consists of centrosymmetric 2D layers with alternating single diazine, single EE azido, and double end-on (EO) azido bridges, where the chirality is destroyed by the centrosymmetric double EO bridges. These compounds exhibit very different magnetic behaviors. In particular, 1 behaves as a metamagnet built of homometallic ferrimagnetic chains with a unique "fused-triangles" topology, 2 behaves as a 1D antiferromagnet with alternating antiferromagnetic interactions, 3a and 3b behave as spin-canted weak ferromagnets with different critical temperatures, and 4 also behaves as a spin-canted weak ferromagnet but exhibits two-step magnetic transitions.  相似文献   

17.
Six new copper(II) complexes of formula [Cu(mu-cbdca)(H2O)]n (1) (cbdca = cyclobutanedicarboxylate), [Cu2(mu-cbdca)2(mu-bipy)2]n (2) (bipy = 4,4'-bipyridine), [Cu(mu-cbdca)(mu-bpe)]n (3) (bpe = 1,2-bis(4-pyridyl)ethane), [Cu(mu-cbdca)(bpy)]2 (4) (bpy = 2,2'-bipyridine), [Cu(terpy)(ClO4)]2(mu-cbdca).H2O (5) (terpy = 2,2':6',2' '-terpyridine), and [Cu(cbdca)(phen) (H2O)].2H2O (6) (phen = 1,10-phenanthroline) were obtained and structurally characterized by X-ray crystallography. Complex 1 is a two-dimensional network with a carboxylate bridging ligand in syn-anti (equatorial-equatorial) coordination mode. Complexes 2 and 3 are formed by chains through syn-anti (equatorial-apical) carboxylate bridges, linked to one another by the corresponding amine giving two-dimensional nets. Complexes 4 and 5 are dinuclear, with the copper ions linked by two oxo (from two different carboxylate) bridging ligands in 4 and with only one carboxylate showing the unusual bis-unidentate mode in complex 5. Complex 6 is mononuclear, with the carboxylate linked to copper(II) in a chelated form. Intermolecular hydrogen bonds and pi-pi stacking interactions build an extended two-dimensional network. Magnetic susceptibility measurements of complexes 1-5 in the temperature range 2-300 K show the occurrence of weak ferromagnetic coupling for 1 and 4 (J = 4.76 and 4.44 cm(-1), respectively) and very weak antiferromagnetic coupling for 2, 3, and 5 (J = -0.94, -0.67, and -1.61 cm(-1), respectively). Structural features and magnetic values are compared with those reported for the similar copper(II) malonate and phenylmalonate complexes.  相似文献   

18.
物材多孔材料广泛应用于吸附、形状和尺寸选择性的多相催化和离子交换.利用有机胺分子的模板和结构导向作用已设计合成了许多沸石分子筛、中孔MCM-41和非致密过渡金属磷酸盐等多孔性氧化料[’-“.过渡金属氧簇结构中普遍存在金属-金属键,业已证明金属氧簇合物具有催化活  相似文献   

19.
Mono-, di-, and trinuclear copper-azido moieties have been synthesized by varying the size of the countercations. [Bu4N]+ yielded a [Cu2(N3)6]2- copper-azido moiety in [Bu4N]2[Cu2(mu(1,1)-N3)2(N3)4], 1, and [Pr4N]+ yielded a [Cu3(N3)8]2- moiety in {[Pr4N]2[Cu3(mu(1,1)-N3)4(N3)4]}n, 2, in which symmetry-related [Cu3(N3)8]2- moieties are doubly mu(1,1)-azido bridged to form unprecedented infinite zigzag chains parallel to the crystallographic a-axis. In the case of [Et4N]+, the mononuclear species [Et4N]2[Cu(N3)4], 3, has been formed. All complexes have been characterized structurally by single-crystal X-ray analysis: 1, C32H72N20Cu2, triclinic, space group P, a = 10.671(9) A, b = 12.239(9) A, c = 10.591(5) A, alpha = 110.01(4) degrees , beta = 93.91(5) degrees , gamma = 113.28(5) degrees , V = 1160.0(1) A3; 2, C24H56N26Cu3, monoclinic, space group P2(1)/n, a = 8.811(2) A, b = 37.266(3) A, c = 13.796(1) A, beta = 107.05(1) degrees , V = 4330.8(10) A(3); 3, C16H40N14Cu, tetragonal, space group I4/m, a = b = 10.487(1) A, c = 12.084(2) A, V = 1328.9(3) A3. The variable-temperature magnetic susceptibility measurements showed that although the magnetic interaction in [Bu4N]2[Cu2(mu(1,1)-N3)2(N3)4], 1, is antiferromagnetic (J = -36 cm(-1)), it is ferromagnetic in {[Pr4N]2[Cu3(mu(1,1)-N3)4(N3)4]}n, 2 (J = 7 cm(-1)). As expected, the [Et4N]2[Cu(N3)4] complex, 3, is paramagnetic.  相似文献   

20.
New homo- and heterometallic, hexa- and pentanuclear complexes of formula {[Cu2(mpba)2(H2O)F][Cu(Me5dien)]4}(PF6)(3).5H2O (1), {[Cu2(Me3mpba)2(H2O)2][Cu(Me5dien)]4}(ClO4)(4).12H2O (2), {[Cu2(ppba)2][Cu(Me5dien)]4}(ClO4)4 (3), and [Ni(cyclam)]{[Cu2(mpba)2][Ni(cyclam)]3}(ClO4)(4).6H2O (4) [mpba=1,3-phenylenebis(oxamate), Me3mpba=2,4,6-trimethyl-1,3-phenylenebis(oxamate), ppba=1,4-phenylenebis(oxamate), Me5dien=N,N,N'N' ',N' '-pentamethyldiethylenetriamine, and cyclam=1,4,8,11-tetraazacyclotetradecane] have been synthesized through the use of the "complex-as-ligand/complex-as-metal" strategy. The structures of 1-3 consist of cationic CuII6 entities with an overall [2x2] ladder-type architecture which is made up of two oxamato-bridged CuII3 linear units connected through two m- or p-phenylenediamidate bridges between the two central copper atoms to give a binuclear metallacyclic core of the cyclophane-type. Complex 4 consists of cationic CuII2NiII3 entities with an incomplete [2x2] ladder-type architecture which is made up of oxamato-bridged CuIINiII and CuIINiII2 linear units connected through two m-phenylenediamidate bridges between the two copper atoms to give a binuclear metallacyclophane core. The magnetic properties of 1-3 and 4 have been interpreted according to their distinct "dimer-of-trimers" and "dimer-plus-trimer" structures, respectively, (H=-J(S1A.S3A+S1A.S4A+S2B.S5B+S2B.S6B)-J'S1A.S2B). Complexes 1-4 exhibit moderate to strong antiferromagnetic coupling through the oxamate bridges (-JCu-Cu=81.3-105.9 cm-1; -JCu-Ni=111.6 cm-1) in the trinuclear and/or binuclear units. Within the binuclear metallacyclophane core, a weak to moderate ferromagnetic coupling (J'Cu-Cu=1.7-9.0 cm-1) operates through the double m-phenylenediamidate bridge, while a strong antiferromagnetic coupling (J'Cu-Cu=-120.6 cm-1) is mediated by the double p-phenylenediamidate bridge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号