首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peculiarities of the superconducting state (s and d pairing) are considered in the model of the pseudogap state induced by short-range order fluctuations of the dielectric (AFM (SDW) or CDW) type, which is based on the model of the Fermi surface with “hot spots.” A microscopic derivation of the Ginzburg-Landau expansion is given with allowance for all Feynman diagrams in perturbation theory in the electron interaction with short-range order fluctuations responsible for strong scattering in the vicinity of hot spots. The superconducting transition temperature is determined as a function of the effective pseudogap width and the correlation length of short-range order fluctuations. Similar dependences are derived for the main parameters of a superconductor in the vicinity of the superconducting transition temperature. It is shown, in particular, that the specific heat jump at the transition point is considerably suppressed upon a transition to the pseudogap region on the phase diagram.  相似文献   

2.
Peculiarities of the superconducting state (s and d pairing) are considered in a simple model of the pseudogap state caused by short-range fluctuations (e.g., of the antiferromagnetic type), which is based on the model of a Fermi surface with “hot” regions. A system of Gor’kov recurrence equations is constructed taking into account all diagrams in perturbation theory in the electron interaction with short-range fluctuations. The superconducting transition temperature is determined, and the temperature variation of the energy gap depending on the pseudogap width and the correlation length of short-range fluctuations is analyzed. In a similar approximation, a microscopic derivation of the Ginzburg-Landau expansion is carried out, and the behavior of the main physical parameters of the superconductor near the transition temperature is studied depending on the pseudogap width as well as the correlation length of the fluctuations. The obtained results are in qualitative agreement with a number of experiments with underdoped HTSC cuprates.  相似文献   

3.
The features of the superconducting state are studied in the simple exactly solvable model of the pseudogap state induced by fluctuations of the short-range “dielectric” order in the model of the Fermi surface with “hot” spots. The analysis is carried out for arbitrary short-range correlation lengths ξcorr. It is shown that the superconducting gap averaged over such fluctuations differs from zero in a wide temperature range above the temperature T c of the uniform superconducting transition in the entire sample, which is a consequence of non-self-averaging of the superconducting order parameter over the random fluctuation field. In the temperature range T>T c, superconductivity apparently exists in individual regions (drops). These effects become weaker with decreasing correlation length ξcorr; in particular, the range of existence for drops becomes narrower and vanishes as ξcorr → 0, but for finite values of ξcorr, complete self-averaging does not take place.  相似文献   

4.
Calculations of the optical conductivity are performed in a simple model of the electronic spectrum of a two-dimensional system with “hot regions” on the Fermi surface. The model leads to a strong restructuring of the spectral density (pseudogap) in these regions. It is shown that this model makes it possible to reproduce qualitatively the basic features of the optical measurements in the pseudogap state of high-temperature superconducting cuprates. Pis’ma Zh. éksp. Teor. Fiz. 69, No. 6, 447–452 (25 March 1999)  相似文献   

5.
We analyze the peculiarities of the superconducting state (s- and d-wave paring) in the model of the pseudogap state induced by Heisenberg antiferromagnetic short-range order spin fluctuations. The model is based on the pattern of strong scattering near hot spots at the Fermi surface. The analysis is based on the microscopic derivation of the Ginzburg-Landau expansion with the inclusion of all Feynman diagrams of perturbation theory for the interaction of an electron with short-range order fluctuations and in the ladder approximation for the scattering by normal (nonmagnetic) impurities. We determine the dependence of the critical superconducting transition temperature and other superconductor characteristics on the pseudogap parameters and the degree of impurity scattering. We show that the characteristic shape of the phase diagram for high-temperature superconductors can be explained in terms of the model under consideration.  相似文献   

6.
7.
A 2D model of the pseudogap state is considered on the basis of the scenario of strong electron scattering by short-range-order fluctuations of the “dielectric” (antiferromagnetic or charge density wave) type. A system of recurrence relations is constructed for a one-particle Green’s function and the vertex part, describing the interaction of electrons with an external field. This system takes into account all Feynman diagrams for electron scattering at short-range-order fluctuations. The results of detailed calculations of optical conductivity are given for various geometries (topologies) of the Fermi surface, demonstrating both the effects of pseudogap formation in the electron spectrum and the localization effects. The obtained results are in qualitative agreement with experimental data for underdoped HTSC cuprates.  相似文献   

8.
We propose a simple model of the electron spectrum of a two-dimensional system with hot sections on the Fermi surface that significantly transforms the spectral density (pseudogap) in these sections. Using this model, we set up a Ginzburg-Landau expansion for s and d type Cooper pairing and analyze the effect of the pseudogap in the electron spectrum on the main properties of a superconductor. Zh. éksp. Teor. Fiz. 115, 632–648 (February 1999)  相似文献   

9.
We present an exactly solvable toy model which describes the emergence of a pseudogap in an electronic system due to a fluctuating off-diagonal order parameter. In one dimension our model reduces to the fluctuating gap model (FGM) with a gap that is constrained to be of the form , where A and Q are random variables. The FGM was introduced by Lee, Rice and Anderson [Phys. Rev. Lett. 31, 462 (1973)] to study fluctuation effects in Peierls chains. We show that their perturbative results for the average density of states are exact for our toy model if we assume a Lorentzian probability distribution for Q and ignore amplitude fluctuations. More generally, choosing the probability distributions of A and Q such that the average of vanishes and its covariance is , we study the combined effect of phase and amplitude fluctuations on the low-energy properties of Peierls chains. We explicitly calculate the average density of states, the localization length, the average single-particle Green's function, and the real part of the average conductivity. In our model phase fluctuations generate delocalized states at the Fermi energy, which give rise to a finite Drude peak in the conductivity. We also find that the interplay between phase and amplitude fluctuations leads to a weak logarithmic singularity in the single-particle spectral function at the bare quasi-particle energies. In higher dimensions our model might be relevant to describe the pseudogap state in the underdoped cuprate superconductors. Received 15 March 2000  相似文献   

10.
曹天德 《中国物理 B》2010,19(11):117402-117402
This paper deduces that the particular electronic structure of cuprate superconductors confines Cooper pairs to be first formed in the antinodal region which is far from the Fermi surface,and these pairs are incoherent and result in the pseudogap state.With the change of doping or temperature,some pairs are formed in the nodal region which locates the Fermi surface,and these pairs are coherent and lead to superconductivity.Thus the coexistence of the pseudogap and the superconducting gap is explained when the two kinds of gaps are not all on the Fermi surface.It also shows that the symmetry of the pseudogap and the superconducting gap are determined by the electronic structure,and non-s wave symmetry gap favours the high-temperature superconductivity.Why the high-temperature superconductivity occurs in the metal region near the Mott metal-insulator transition is also explained.  相似文献   

11.
12.
We investigate the transport properties of a (small) quantum dot connected to Fermi liquid leads with a power-law density of states (DOS). Such a system, if experimentally realizable, will have interesting physical properties including: (i) non-saturating Coulomb blockade peak widths; (ii) a non-unitary Kondo peak symmetrically placed between Coulomb blockade peaks; (iii) an absence of conductance away from particle-hole symmetry at sufficiently low temperatures; and (iv) evidence of a quantum critical point as a function of dot-lead hopping. These properties are compared and contrasted with one dimensional Luttinger systems exhibiting a power-law “tunneling-DOS”.  相似文献   

13.
A simple, exactly solvable model of a pseudogap state induced by fluctuations of dielectric short-range order is used to study the peculiarities of the electronic spectral density and density of states of a superconductor in the model of the Fermi surface with hot patches. The problem is considered for arbitrary values of the short-range order correlation length ξcorr. It is shown that the absence of self-averaging of the superconducting order parameter over the random field of dielectric fluctuations causes the spectral density and density of states to change significantly. The superconducting character of these quantities persists in a wide temperature range above the temperature T c of the superconducting transition, which is uniform over the whole sample.  相似文献   

14.
We analyze several almost exactly solvable models of the electronic spectrum of two-dimensional systems with well-developed short-range-order dielectric (e.g., antiferromagnetic) or superconducting fluctuations that give rise to an anisotropic pseudogap state in certain segments of the Fermi surface. We develop a recurrence procedure for calculating the one-electron Green’s function that is equivalent to summing all Feynman diagrams. The procedure is based on an approximate ansatz for higher order terms in the perturbation series. We do detailed calculations of the spectral densities and the one-electron density of states. Finally, we analyze the limits of the adopted approximations and some important points concerning the substantiation of these approximations. Zh. éksp. Teor. Fiz. 115, 1765–1785 (May 1999)  相似文献   

15.
The normal state of Iron chalcogenide superconductors show a range of unconventionalfeatures. Bad-metallic resistivity and proximity to insulating state manifest themselvesin spectral and transport responses. In particular, obervation of low-energy pseudogapfeature in the normal state raises the issue of the nature of processes underpinning itsemergence as well as its relation to unconventional superconductivity. Here, using theLDA+DMFT method, we show how correlation-induced orbital-selective pseudogap-like physicsunderpin these incoherent features in stoichimetric and electron-doped FeSesuperconductor. We discuss the pseudogap regime microscopically, along with implicationsfor the superconductive instability.  相似文献   

16.
We consider the evolution of the spectral function of charge carriers for a 2D Kondo lattice depending on the parameters of the model. A self-consistent solution is obtained for the spectral function using the formalism of irreducible Green’s functions. In the low doping level regime, the behavior of the spectral function exhibits suppression of the spectral weight of carriers in the low-frequency range, which is typical of the pseudogap state.  相似文献   

17.
Reconstruction of the Fermi surface of high-temperature superconducting cuprates in the pseudogap state is analyzed within a nearly exactly solvable model of the pseudogap state, induced by short-range order fluctuations of the antiferromagnetic (AFM), spin-density wave (SDW), or a similar charge-density wave (CDW) order parameter, competing with the superconductivity. We explicitly demonstrate the evolution from “Fermi arcs” (on the “large” Fermi surface) observed in the ARPES experiments at relatively high temperatures (when both the amplitude and phase of the density waves fluctuate randomly) towards the formation of typical “small” electron and hole “pockets,” which are apparently observed in the de Haas-van Alphen and Hall resistance oscillation experiments at low temperatures (when only the phase of the density waves fluctuate and the correlation length of the short-range order is large enough). A qualitative criterion for the quantum oscillations in high magnetic fields to be observable in the pseudogap state is formulated in terms of the cyclotron frequency, the correlation length of fluctuations, and the Fermi velocity. The text was submitted by the authors in English.  相似文献   

18.
Recent scanning tunneling microscopy experiments of Bi(2)Sr(2)CaCu(2)O(8+delta) have shown evidence of real-space organization of electronic states at low energies in the pseudogap state [Science 303, 1995 (2004)]]. We argue based on symmetry considerations as well as model calculations that the experimentally observed modulations are due to a density wave of d-wave Cooper pairs without global phase coherence. We show that scanning tunneling microscopy measurements can distinguish a pair density wave from more typical electronic modulations such as those due to charge density wave ordering or scattering from an on site periodic potential.  相似文献   

19.
We develop a theory of a pseudogap state appearing near the superconductor-insulator (SI) transition in strongly disordered metals with an attractive interaction. We show that such an interaction combined with the fractal nature of the single-particle wave functions near the mobility edge leads to an anomalously large single-particle gap in the superconducting state near SI transition that persists and even increases in the insulating state long after the superconductivity is destroyed. We give analytic expressions for the value of the pseudogap in terms of the inverse participation ratio of the corresponding localization problem.  相似文献   

20.
《Physics letters. A》1987,125(5):267-270
Thermodynamic and electrodynamic properties of heavy-fermion superconductors are studied in a two-band model with interband (“hybrid”) singlet pairing. The general form of electron-electron interaction is analyzed and it is shown in particular that antiferromagnetic spin fluctuations increase the tendency to such a pairing. The expression for the free energy functional is obtained and the behaviour of the correlation length Hc2 and the London penetration depth at T = 0 and TTc is investigated. The model discussed gives reasonable qualitative agreement with the properties of heavy-fermion superconductors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号