首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present an investigation of the orientations and positions of tubular fullerene molecules (C90, ..., C200) encapsulated in single-walled carbon nanotubes (SWCNT), a series of so-called fullerene nanopeapods. We find that increasing the tube radius leads to the following succession of energetically stable regimes: (1) lying molecules positioned on the tube's long axis; (2) tilted molecules on the tube's long axis; and (3) lying molecules shifted away from the tube's long axis. As opposed to C70 and C80 molecules encapsulated in a SWCNT, standing orientations do not develop. Our results are relevant for the possible application of molecular-orientation-dependent electronic properties of fullerene nanopeapods, and also for the interpretation of future experiments on double-walled carbon nanotube formation by annealing fullerene peapod systems.  相似文献   

2.
A molecular dynamics simulation of the low-energy interaction of C60 fullerenes and Cu1@C60, Cu6@C60, and Cu13@C60 endofullerenes with a Cu(100) surface was performed. The effects of a copper cluster encapsulated in a fullerene and of a fullerene’s translational motion and rotation energy on its penetration into a surface were investigated. It was shown that the presence of an encapsulated cluster has a positive effect on fullerene penetration into a surface with preservation of the fullerene’s structure. The optimal conditions for fullerene penetration into a copper crystal surface were determined.  相似文献   

3.
Single P-doped endohedral P@C60 is investigated via semiempirical and first-principles calculations. Unlike the encased N atom, which is situated on the centre of the C60 cage and not covalently bound to the carbon atoms of the fullerene cage, static geometric optimization shows that the encased P atom occupies an off-centre position and is bound to the carbon atoms of the fullerene cage. The electronic ground state of the doped system is the spin quarter state, with spin density distribution significantly compressed by the cage.  相似文献   

4.
We report the first-principles Car-Parrinello molecular dynamics study of the behaviour of a single transition metal Ta atom on fullerene C60, at different temperatures, and for both neutral and charged clusters. We seek to characterise the motion of the lone Ta metal atom on the C60 surface, contrasting its behaviour both with that of three Ta atoms, as well as with a single alkali metal atom on the cage surface. Our earlier simulations on C60Ta3 had revealed that the Ta atoms on the surface of the fullerene are affected by a rather high mobility, and that the motion of these atoms is highly correlated due to Ta-atom-Ta-atom attraction. Earlier, experimental studies of a single metal atom (K, Rb) on the surface of a C60 molecule had led to the inference that at room temperature the metal atom skates freely over the surface, the first direct evidence for which was presented by us in earlier first principles molecular dynamical simulations.  相似文献   

5.
Reactions of fullerene C60 with atomic fluorine are studied by the unrestricted broken spin symmetry Hartree-Fock (UBS HF) approach implemented in semiempirical codes based on the AMI technique. The calculations are focused on a successive addition of a fluorine atom to the fullerene cage following the indication of the highest chemical susceptibility of the cage atom, which is calculated at each step. The proposed computational synthesis is based on the effectively unpaired-electron concept of the chemical susceptibility of fullerene atoms. The obtained results are analyzed from the standpoints of energy, symmetry, and the composition abundance. A good fitting of the data to experimental findings proves a creative role of the suggested synthetic methodology.  相似文献   

6.
A semi-empirical molecular dynamics model is developed. The central collisions of C60+C60 and He@C60+He@C60 at different incident energies are investigated based on this model. It is found that the dimer structures have been produced at proper incident energies and these fullerene dimers could be formed by a self-assembly of C60 fullerene and He@C60. The He atom has a significant effect at higher incident energy and this embedded He atom can enhance the stability of the dimer structure.  相似文献   

7.
Photofragmentation of metal fullerides C60Mx (M=Sm, Pt and Ni) has been studied by excimer laser ablation–TOF mass spectrometry. Metallofullerenes of the type CnM (n<60) have been observed in both the positive and negative ionic modes, with C59M being the most prominent species. It is supposed that the metal atom is incorporated into the network of the fullerene cage to replace one carbon atom of the cage, forming substitutional metallofullerene. The occurrence of the C59M, C58M, C57M clusters in the mass spectra is confirmed by the coincidence of the intensity distribution of the mass peaks with the isotopic abundance pattern calculated from the natural abundance of isotopes of C and M. Odd-numbered high-carbon clusters are observed in our laser ablation study of all the metal fullerides in the negative ion channel. The evolution of the mass spectra of these samples with laser irradiation shots indicates that the transformation process from an externally doped fullerene to the substitutionally doped fullerene involves the loss of metal carbide, MC. The structures of metallofullerenes C2n+1M and C2nM with even and odd total numbers of atoms respectively are discussed. Formation mechanisms with the participation of odd-numbered all-carbon fullerene clusters as intermediates are supposed. Received: 18 June 2001 / Accepted: 28 September 2001 / Published online: 2 May 2002  相似文献   

8.
We have demonstrated that the polarization of the fullerene shell considerably alters the polarization potential of an atom, stuffed inside a fullerene. This essentially affects the electron elastic scattering phases as well as corresponding cross sections. We illustrate the general trend by particular examples of electron scattering upon endohedrals Ne@C60 and Ar@C60. To obtain the presented results, we have suggested a simplified approach that permits to incorporate the effect of fullerenes polarizability into the Ne@C60 and Ar@C60 polarization potential. By applying this approach, we obtained numeric results that show strong variations in shape and magnitudes of scattering phases and cross sections due to effect of fullerene polarization upon the endohedral polarization potential.  相似文献   

9.
The photoion yield spectra of an endohedral metallofullerene Pr@C82 were measured in the photon energy range of 100-150 eV by using time-of-flight mass spectrometry. Parent ions Pr@C82+, Pr@C822+ and Pr@C823+ were observed in the mass spectra. The photoion yield spectra of Pr@C822+ showed a broad peak at 120-140 eV that was assigned to the 4d-4f giant dipole resonance of the encapsulated Pr atoms. Absolute photoabsorption cross sections of Pr@C82 were evaluated from the photoion yield spectra to be 37±12 Mb at 110 eV (off-resonance) and 52±13 Mb at 130 eV (on-resonance). These cross sections of Pr@C82 were compared with the results of Ce@C82, the only metallofullerene whose photoionization properties have ever been studied near the 4d edge of the encapsulated metal atom. The enhancement of photoabsorption due to the giant resonance was found to be similar in Pr@C82 and Ce@C82, but there are marked differences in the peak shapes, which can be explained as due to interference effects between the fullerene cage and the encapsulated metal atoms.  相似文献   

10.
Ferromagnetic nanoclusters are very useful for a magnetic recording. However, application of ferromagnetic nanoclusters is limited due to air-oxidation. One way to solve air-oxidation is to encapsulate ferromagnetic nanoclusters with inert materials such as carbon when they are produced. This allows us to keep excellent magnetic properties for a long time. In this work, we report a very simple synthetic method of fullerene (i.e., onions and nanotubes) encapsulated ferromagnetic nickel and cobalt nanoclusters by thermally decomposing metallocene vapors with a resistive heater. Protection from air-oxidation was tested by annealing encapsulated ferromagnetic nanoclusters in air up to ∼180°C for half a day and then, recording XRD patterns. No oxide peaks were observed in the XRD patterns, indicating that oxidation protection via fullerene encapsulation is very good. Magnetic property measurement showed that both fullerene encapsulated nickel and cobalt nanoclusters possessed excellent magnetic properties.  相似文献   

11.
The results of ab initio Hartree-Fock calculations of endo-and exohedral C60 fullerene complexes with the Li+ ion and Li2 dimer are presented. The coordination of the Li+ ion and the Li2 dimer in the endohedral complexes and the coordination of Li+ ion in the exohedral complex of C60 fullerene are determined by the geometry optimization using the 3–21G basis set. In the endohedral Li+C60 complex, the Li+ ion is displaced from the center of the C60 cage to the centers of carbon hexa-and pentagons by 0.12 nm. In the Li2 dimer encapsulated inside the C60 cage, the distance between the lithium atoms is 0.02 nm longer than that in the free molecule. The calculated total and partial one-electron densities of states of C60 fullerene are in good agreement with the experimental photoelectron and X-ray emission spectra. Analysis of one-electron density of states of the endohedral Li+@C60 complex indicates an ionic bonding between the Li atoms and the C60 fullerene. In the Li+C60 and Li+@C60 complexes, there is a strong electrostatic interaction between the Li+ ion and the fullerene.  相似文献   

12.
Adsorption of helium on free, negatively charged fullerenes is studied in this work. Helium nanodroplets have been doped with fullerenes and ionised by electron attachment. For suitable experimental conditions, C?60 and C?70 anions are found to be complexed with a large number of helium atoms. Prominent anomalies in the ion abundances indicate the high stability of the commensurate 1×1 phase in which all hollow adsorption sites are occupied by one atom each. The adsorption energy for an additional helium atom is about 40% less than for atoms in the commensurate layer, similar to our previous findings for fullerene cations and in agreement with theoretical dissociation energies. Similarly, an anomaly in the adsorption energy occurs when 60 helium atoms are attached to C?60 or 65 to C?70. For C60, the anomaly coincides with the one observed for cationic complexes but for C70 it does not. Implications of these features are discussed in light of several theoretical studies of neutral and positively charged helium–fullerene complexes.  相似文献   

13.
Jiaqian Li 《Molecular physics》2018,116(10):1297-1305
The heat conduction and its dependence on fullerene coalescence in carbon nanopeapods (CNPs) have been investigated by equilibrium molecular dynamics simulations. The effects of fullerene coalescence on the thermal conductivity of CNPs were discussed under different temperatures. It is shown that the thermal conductivity of the CNPs decreases with the coalescence of encapsulated fullerene molecules. The thermal transmission mechanism of the effect of fullerene coalescence was analysed by the mass transfer contribution, the relative contributions of phonon oscillation frequencies to total heat current and the phonon vibrational density of states (VDOS). The mass transfer in CNPs is mainly attributed to the motion of encapsulated fullerene molecule and it gets more restricted with the coalescence of the fullerene. It shows that the low-frequency phonon modes below 20 THz contribute mostly to thermal conductivity in CNPs. The analysis of VDOS demonstrates that the dominating contribution to heat transfer is from the inner fullerene chain. With the coalescence of fullerene, the interfacial heat transfer between the CNT and fullerene chain is strengthened; however, the heat conduction of the fullerene chain decreases more rapidly at the same time.  相似文献   

14.
The probability that photoionization of the caged atom in an endohedral system is accompanied by excitation of the fullerene shell is shown to be close to unity in broad intervals of the photoelectron energies. This is obtained by summation of the perturbative series for the interaction between the photoelectron and the fullerene shell. The result can be verified in experiments. As an outcome, interaction between the photoelectron ejected from the caged atom and the fullerene shell cannot be described by a static potential, since inelastic processes become decisively important.  相似文献   

15.
Quantum-chemical calculations of the geometric structure and vibrational spectra of lanthanide endofullerenes have been carried out. The vibrational frequencies of lanthanide atoms depend substantially on the symmetry of the molecular structure of the endofullerene and on the distance between the metal atom and the carbon cage. The infrared spectra of the endofullerenes M@C60 contain vibrations that are forbidden by symmetry for the empty fullerene C60. A change in the vibrational spectra due to the encapsulation of a metal atom in fullerenes with a C60 cage is considerably more pronounced than that of the higher fullerenes. In the vibrational spectra, there are lines not characteristic of C60, which indicates the presence of M@C60 endofullerenes in a mixture with C60 fullerenes.  相似文献   

16.
唐春梅  郭微  朱卫华  刘明熠  张爱梅  巩江峰  王辉 《物理学报》2012,61(2):26101-026101
采用密度泛函理论中广义梯度近似对非典型富勒烯C22和过渡金属内掺衍生物M@C22(M=Sc,Ti,V,Cr,Mn,Fe,Co和Ni)的几何结构和电子结构进行计算研究.发现非典型富勒烯C22的基态结构是含有一个四碳环的单重态笼状结构.过渡金属原子的掺入明显提高了体系的稳定性. C-M键既有一定共价性又有一定离子性.磁性、能级图、轨道分布和态密度图分析表明: M原子的3d轨道和碳笼的C原子的原子轨道之间存在较强的轨道杂化. Ti, Cr, Fe和Ni内掺的结构出现磁性完全猝灭现象. Sc和碳笼间是弱反铁磁作用, V,Mn和Co与碳笼间是弱铁磁作用.  相似文献   

17.
The transport properties of the endohedral Li@C20 metallofullerene are studied using density functional non-equilibrium Green’s function method. The equilibrium conductance of Li@C20 metallofullerene becomes larger than that of the empty C20 fullerene molecule. The IV curve under low-bias voltage shows the characteristic of metallic behavior; another, the novel negative differential resistance behavior is also observed. It is found that the doping effect of Li atom significantly changes the transport properties of C20 fullerene.  相似文献   

18.
A mathematical model of a nanoemitter for the giga- and terahertz ranges based on a carbon nanopeapod formed by a (10, 10) nanotube with encapsulated C60 fullerenes has been proposed. The fundamental possibility of the generation of giga- and terahertz radiation by a charged free fullerene oscillating in the potential well created by the atomic framework of the nanotube and several fullerenes polymerized with its walls and with each other has been proven. The radiation frequency is controlled by means of an external electric field. The dependence of the amplitude and frequency of oscillations on the charge of C60 and on the external field strength has been revealed by the molecular dynamics method. If the fullerene has a charge of +1e or +2e, it emits electromagnetic waves only in the gigahertz range in strong external fields. At the same time, the physical conditions under which the frequency of radiation can be 0.36 GHz have been established: the charge of the fullerene must be +3e, the tube should be oriented strictly along the external field lines, and the strength should be 0.1 V/nm.  相似文献   

19.
Optical properties of fullerene and non-fullerene peapods   总被引:1,自引:0,他引:1  
Single-wall carbon nanotubes (SWNTs) encapsulating fullerenes, so-called fullerene peapods, were synthesized in high yield by using diameter-selected nanotubes as pods. Transmission electron microscopy revealed high-density fullerene chains inside the nanotubes. X-ray-diffraction measurements indicate 85% filling for C60 and 72% filling for C70 molecules as a total yield. Interestingly, C60 peas do not show any thermal expansion while C70 peas show normal behavior. Room-temperature Raman spectra show one-dimensional photopolymerization of C60 inside nanotubes by blue-laser irradiation, suggesting molecular rotation inside them. In C70 peapods, no photopolymerization was observed but the relative Raman intensity of each peak is different from the C70 3D crystal. This is probably caused by mixing of two different crystal structures in C70 peas. Furthermore, we synthesized Zn-diphenylporphyrin peapods. Optical absorption and Raman spectra suggest that the encapsulated molecules are deformed by interaction with the SWNT. Received: 12 November 2001 / Accepted: 3 December 2001 / Published online: 4 March 2002  相似文献   

20.
Phase transitions in two types of amorphous fullerene phases (C60–C70 (50/50) mixtures and an amorpous C70 fullerene phase) are studied via neutron diffraction at pressures of 2–8 GPa and temperatures of 200–1100°C. Fullerenes are amorphized by grinding in a ball mill and sintered under quasi-hydrostatic pressure in a toroidal-type chamber. Diffraction studies are performed ex situ. It is shown that the amorphous phase of fullerenes retains its structure at temperatures of 200–500°C, and amorphous graphite is formed at 800–1100°C with a subsequent transition to crystalline graphite. This process is slow in a mixture of fullerenes, compared to C70 fullerene. According to neutron diffraction data, the amorphous graphite formed from amorphous fullerene phases has anisotropy that is much weaker in a fullerene mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号