首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unsteady Reynolds-averaged Navier–Stokes (URANS) simulations and detached-eddy simulations (DES) were performed of flow around a circular cylinder placed near and parallel to a moving ground, on which substantially no boundary layer developed to interfere with the cylinder. The results were compared with experiments previously reported by the authors to examine how accurately the URANS and DES can predict the cessation of von Kármán-type vortex shedding and the attendant critical drag reduction of the cylinder in ground effect. The DES, which were performed in a three-dimensional domain with spanwise periodicity imposed, correctly captured the cessation of the vortex shedding, whereas both two- and three-dimensional URANS also predicted it but at a much smaller gap-to-diameter ratio compared with the experiments. The wake structures of the cylinder predicted by the DES were in good agreement with the experiments in both large- and small-gap regimes, and also in the intermediate-gap regime, where the DES captured the intermittence of the vortex shedding in the near-wake region. Based on the results obtained, further discussions are also given to the reason why the von Kármán-type vortices in the URANS solutions incorrectly ‘survived’ until the cylinder came much closer to the ground.  相似文献   

2.
The wake of a surface-mounted finite-height circular cylinder and the associated vortex patterns are strongly dependent on the cylinder aspect ratio and the thickness of the boundary layer on the ground plane relative to the dimensions of the cylinder. Above a critical aspect ratio, the mean wake is characterized by streamwise tip vortex structures and Kármán vortex shedding from the sides of the cylinder. Below a critical aspect ratio, a unique mean wake structure is observed. Recent experimental studies in the literature that used phase-averaged techniques, as well as recent numerical simulations, have led to an improved physical understanding of the near-wake vortex flow patterns. However, the flow above the free end of the finite circular cylinder, and its relationship to the near wake, has not been systematically studied. The effects of aspect ratio and boundary layer thickness on the free-end flow field are also not completely understood, nor has the influence of Reynolds number on the free-end flow field been fully explored. Common features associated with the free end include separation from the leading edge, a mean recirculation zone containing a prominent cross-stream arch (or mushroom) vortex, and reattachment onto the free-surface. Other flow features that remain to be clarified include a separation bubble near the leading edge, one or two cross-stream vortices within this separation bubble, the origins of the streamwise tip or trailing vortices, and various critical points in the near-surface flow topology. This paper reviews the current understanding of the flow above the free end of a surface-mounted finite-height circular cylinder, with a focus on models of the flow field, surface oil flow visualization studies, pressure and heat flux distributions on the free-end surface, measurements of the local velocity field, and numerical simulations, found in the literature.  相似文献   

3.
The influence of a dilute solution of the cationic surfactant C14Sal on the flow past a cylinder was investigated by means of LDV and Toepler Schlieren optics for visualization of both the flow and structure of the fluid. At low Reynolds numbers the flow is similar to the Newtonian Kármán vortex street. The periodic vortex shedding disappears simultaneously with the occurrence of a shear-induced structure. The alteration of the turbulence characteristics is especially pronounced in the turbulent velocity fluctuations with the u rms being many times over the values in water, whereas the v rms are drastically reduced. Received: 18 May 2000 / Accepted: 25 July 2000  相似文献   

4.
Flow characteristics in the near wake of a circular cylinder located close to a fully developed turbulent boundary layer are investigated experimentally using particle image velocimetry (PIV). The Reynolds number based on the cylinder diameter (D) is 1.2×104 and the incident boundary layer thickness (δ) is 0.4D. Detailed velocity and vorticity fields in the wake region (0<x/D<6) are given for various gap heights (S) between the cylinder and the wall, with S/D ranging from 0.1 to 1.0. Both the ensemble-averaged (including the mean velocity vectors and Reynolds stress) and the instantaneous flow fields are strongly dependent on S/D. Results reveal that for S/D⩾0.3, the flow is characterized by the periodic, Kármán-like vortex shedding from the upper and lower sides of the cylinder. The shed vortices and their evolution are revealed by analyzing the instantaneous flow fields using various vortex identification methods, including Galilean decomposition of velocity vectors, calculation of vorticity and swirling strength. For small and intermediate gap ratios (S/D⩽0.6), the wake flow develops a distinct asymmetry about the cylinder centreline; however, some flow quantities, such as the Strouhal number and the convection velocity of the shed vortex, keep roughly constant and virtually independent of S/D.  相似文献   

5.
An adaptive fuzzy sliding mode control (AFSMC) scheme is applied to actively suppress the two-dimensional vortex-induced vibrations (VIV) of an elastically mounted circular cylinder, free to move in in-line and cross-flow directions. Laminar flow regime at Re=90, low non-dimensional mass with equal natural frequencies in both directions, and zero structural damping coefficients, are considered. The natural oscillator frequency is matched with the vortex shedding frequency of a stationary cylinder at Re=100. The strongly coupled unsteady fluid/cylinder interactions are captured by implementing the moving mesh technology through integration of an in-house developed User Define Function (UDF) into the main code of the commercial CFD solver Fluent. The AFSMC approach comprises of a fuzzy system designed to mimic an ideal sliding-mode controller, and a robust controller intended to compensate for the difference between the fuzzy controller and the ideal one. The fuzzy system parameters as well as the uncertainty bound of the robust controller are adaptively tuned online. A collaborative simulation scheme is realized by coupling the control model implemented in Matlab/Simulink to the plant model constructed in Fluent, aiming at determination of the transverse control force required for complete suppression of the cylinder streamwise and cross-flow oscillations. The simulation results demonstrate the high performance and effectiveness of the adopted control algorithm in attenuating the 2D-VIV of the elastic cylinder over a certain flow velocity range. Also, the enhanced transient performance of the AFSM control strategy in comparison with a conventional PID control law is demonstrated. Furthermore, the effect of control action on the time evolution of vortex shedding from the cylinder is discussed. In particular, it is observed that the coalesced vortices in the far wake region of the uncontrolled cylinder, featuring the C(2S)-type vortex shedding characteristic mode, are ultimately forced to switch to the classical von Kármán vortex street of 2S-type mode, displaying wake vortices of moderately weaker strengths very similar to those of the stationary cylinder. Lastly, robustness of AFSMC is verified against relatively large structural uncertainties as well as with respect to a moderate deviation in the uniform inlet flow velocity.  相似文献   

6.
The influence of a wake-mounted splitter plate on the flow around a surface-mounted circular cylinder of finite height was investigated experimentally using a low-speed wind tunnel. The experiments were conducted at a Reynolds number of Re=7.4×104 for cylinder aspect ratios of AR=9, 7, 5 and 3. The thickness of the boundary layer on the ground plane relative to the cylinder diameter was δ/D=1.5. The splitter plates were mounted on the wake centreline with negligible gap between the base of the cylinder and the leading edge of the plate. The lengths of the splitter plates, relative to the cylinder diameter, ranged from L/D=1 to 7, and the plate height was always equal to the cylinder height. Measurements of the mean drag force coefficient were obtained with a force balance, and measurements of the vortex shedding frequency were obtained with a single-component hot-wire probe situated in the wake of the cylinder–plate combination. Compared to the well-studied case involving an infinite circular cylinder, the splitter plate was found to be a less effective drag-reduction device for finite circular cylinders. Significant reduction in the mean drag coefficient was realized only for the finite circular cylinder of AR=9 with intermediate-length splitter plates of L/D=1–3. The mean drag coefficients of the other cylinders were almost unchanged. In terms of its effect on vortex shedding, a splitter plate of sufficient length was able to suppress Kármán vortex shedding for all of the finite circular cylinders tested. For AR=9, vortex shedding suppression occurred for L/D≥5, which is similar to the case of the infinite circular cylinder. For the smaller-aspect-ratio cylinders, however, the splitter plate was more effective than what occurs for the infinite circular cylinder: for AR=3, vortex shedding suppression occurred for all of the splitter plates tested (L/D≥1); for AR=5 and 7, vortex shedding suppression occurred for L/D≥1.5.  相似文献   

7.
We investigate numerically the electromagnetic control of seawater flows over an infinitely long circular cylinder. Stripes of electrodes and magnets, wrapped around the cylinder surface, produce a tangential body force (Lorentz force) that stabilizes the flow. This mechanism delays flow separation, reduces drag and lift, and finally suppresses the von Kármán vortex street. Results from two-dimensional simulations of the Navier–Stokes equations in a range 10<Re<300 and Lorentz force calculations are presented. Emphasis is placed on the disclosure of physical phenomena as well as a quantitative detection of the flow field and forces. It is shown that the drag strongly depends on the geometry of the electromagnetic actuator and on its location at the cylinder surface. The effect of flow control increases with larger Reynolds numbers, since the boundary layer thickness and the penetration depth of the Lorentz force are closely connected.  相似文献   

8.
In the previous papers the authors have reported that the two-dimensional Kármán vortices behind a circular cylinder are deformed until they form chains of spoon-shaped vortex couples whose spanwise scale is about 8d, which is a new type of coherent structure. In this report experimental evidence of this structure is presented. Formation process of the structure and the turbulence in it were investigated for the wake behind a circular cylinder with Re = 2100 and 4200 by means of the flow visualization technique, simultaneous hot wire measurements, spanwise correlation measurements, construction of instantaneous velocity field by the conditional sampling method, etc.  相似文献   

9.
The flow past a square-section cylinder with a geometric disturbance is investigated by numerical simulations. The extra terms, due to the introduction of mapping transformation simulating the effect of disturbance into the transformed Navier-Stokes equations, are correctly derived, and the incorrect ones in the previous literature are pointed out and analyzed. Furthermore, the relationship between the vorticity, especially on the cylinder surface, and the disturbance is derived and explained theoretically. The computations are performed at two Reynolds numbers of 100 and 180 and three amplitudes of waviness of 0.006, 0.025 and 0.167 with another aim to explore the effects of different Reynolds numbers and disturbance on the vortex dynamics in the wake and forces on the body. Numerical results have shown that, at the mild waviness of 0.025, the Kairmain vortex shedding is suppressed completely for Re = 100, while the forced vortex dislocation is appeared in the near wake at the Reynolds number of 180. The drag reduction is up to 21.6% at Re = 100 and 25.7% at Re = 180 for the high waviness of 0.167 compared with the non-wavy cylinder. The lift and the Strouhal number varied with different Reynolds numbers and the wave steepness are also obtained.  相似文献   

10.
Particle image velocimetry measurements are performed in the near wake of a circular cylinder at a Reynolds number of 12,500. Attention is focused on the shear layer that develops just downstream of the separation point from the cylinder surface to investigate the possible existence of a preferred spatio-temporal organization in this flow region and the possible occurrence of the vortex pairing phenomenon. Eddy structures are identified in instantaneous velocity maps in order to investigate their spatial relationships. For that purpose a vortex extraction procedure is designed, based on the wavelet transform of instantaneous maps of the swirling strength. This algorithm allows not only the detection of the vortical structures from the instantaneous velocity fields, giving access to their instantaneous location, but also the estimation of their main characteristics such as their radius, intensity and convection velocity. The vortex population detected in the shear layer is found to be of small diameter compared to that of the von Kármán vortex and of rather high intensity, in agreement with the existence of a thin shear layer. The strong flapping motion of the shear layer and its complex spatial development is also confirmed. By employing conditional analysis of the computed data and their proper scaling, the surrounding of the detected vortex cores is investigated. A preferred spatial vortex separation is detected and is shown to vary with the longitudinal distance from the origin of the shear layer, in agreement with the qualitative behavior of a turbulent plane mixing layer. Evidence of the occurrence of the vortex pairing or amalgamation mechanisms in the shear layer is also demonstrated.  相似文献   

11.
The flapping dynamics of a piezoelectric membrane placed behind a circular cylinder, which are closely related to its energy harvesting performance, were extensively studied near the critical regime by varying the distance between the cylinder and the membrane. A total of four configurations were used for the comparative study: the baseline configuration in the absence of the upstream circular cylinder, and three configurations with different distances (S) between the cylinder and the membrane (S/D=0, 1, and 2). A polyvinylidene fluoride (PVDF) membrane was configured to flutter at its second mode in these experiments. The Reynolds number based on the membrane’s length was 6.35×104 to 1.28×105, resulting in a full view of membrane dynamics in the subcritical, critical, and postcritical regimes. The membrane shape and the terminal voltage were simultaneously measured with a high-speed camera and an oscilloscope, respectively. The influence of the upstream cylinder on the membrane dynamics was discussed in terms of time-mean electricity, instantaneous variations and power spectra of terminal voltage and membrane shape, fluctuating voltage amplitude, and flapping frequency. The experimental results overwhelmingly demonstrated that the terminal voltage faithfully reflected various unsteady events embedded in the membrane’s flapping motion. For all configurations, dependency of the captured electricity on a flow speed beyond the critical status was found to follow the parabolic relationship. In the two configurations in which S/D=0 and 1, the extraneously induced excitation by the Kármán vortex street behind the circular cylinder substantially reduced the critical flow speed, giving rise to effective energy capture at a lower flow speed and a relatively high gain in power output. However, in the configuration in which S/D=2, the intensified excitation by the Kármán vortex street on the membrane considerably reduced the captured energy. Finally, a transient analysis of the membrane’s flapping dynamics in the configuration in which S/D=0 was performed in terms of phase-dependent variations of the membrane segment’s moving speed, membrane curvature, and terminal voltage; the analysis resulted in a full understanding of the energy harvesting process with consecutive inter transfer of elastic, kinetic, and electric energies.  相似文献   

12.
The flow around a circular cylinder undergoing sinusoidal oscillating movement in still water is investigated by phase-locked PIV measurements. The pattern and development of large-scale vortex structures in the flow are studied from the velocity vectors and vorticity contours obtained at eight successive phases of an oscillating cycle. Experiments are performed at three Keulegan–Carpenter numbers; KC=12, 6.28 and 4.25. Results at KC=12 reveal the mechanism of vortex formation and the development of the shed vortices into a vortex street at a lateral direction to the line of cylinder movement. The role of a biased flow stream and the length of the cylinder stroke in the formation of the vortex street are discussed. At the lower KC numbers, a symmetric pair of vortices is found attached to the leeward face of the cylinder. The vortex pair exhibits an increasing degree of asymmetry when KC increases from 4.25 to 6.28. An explanation in terms of the length of the cylinder strokes and the degree of flow asymmetry is offered for the transition of flow regimes from a vortex pair to a vortex street. The present results are compared with the observations made in previous experimental and numerical studies in the literature.  相似文献   

13.
An exegesis of a novel mechanism leading to vortex splitting and subsequent shedding that is valid for two-dimensional incompressible, inviscid or viscous, and external or internal or wall-bounded flows, is detailed in this research. The mechanism, termed the vortex shedding mechanism (VSM) is simple and intuitive, requiring only two coincident conditions in the flow: (1) the existence of a location with zero momentum and (2) the presence of a net force having a positive divergence. Numerical solutions of several model problems illustrate causality of the VSM. Moreover, the VSM criteria is proved to be a necessary and sufficient condition for a vortex splitting event in any two-dimensional, incompressible flow. The VSM is shown to exist in several canonical problems including the external flow past a circular cylinder. Suppression of the von Kármán vortex street is demonstrated for Reynolds numbers of 100 and 400 by mitigating the VSM.  相似文献   

14.
Measurements were made in the stern boundary layers and near wakes of an elliptic cylinder and a slender ship model. Turbulence intensities, Reynolds stresses, kinematic eddy viscosities and mixing lengths are presented. For the elliptic cylinder, furthermore, auto-correlation and power spectrum are obtained. It is shown that the separation from the cylinder increases the turbulence intensities, and the Kármán vortices enhance the turbulence power at the vortex frequency. All distributions of Reynolds stresses in the thick boundary layer and wake of the ship model show a secondary low peak at about half the thickness.  相似文献   

15.
A numerical study on the flow past a square cylinder placed parallel to a wall, which is moving at the speed of the far field has been made. Flow has been investigated in the laminar Reynolds number (based on the cylinder length) range. We have studied the flow field for different values of the cylinder to wall separation length. The governing unsteady Navier–Stokes equations are discretized through the finite volume method on a staggered grid system. A SIMPLE type of algorithm has been used to compute the discretized equations iteratively. A shear layer of negative vortex generates along the surface of the wall, which influences the vortex shedding behind the cylinder. The flow‐field is distinct from the flow in presence of a stationary wall. An alternate vortex shedding occurs for all values of gap height in the unsteady regime of the flow. The strong positive vortex pushes the negative vortex upwards in the wake. The gap flow in the undersurface of the cylinder is strong and the velocity profile overshoots. The cylinder experiences a downward force for certain values of the Reynolds number and gap height. The drag and lift are higher at lower values of the Reynolds number. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
The flow past a circular-section cylinder with a conic shroud perforated with four holes at the peak was simulated numerically at \(Re=100\), considering two factors, viz. the angle of attack and the diameter of the holes. The effects of the perforated conic shroud on the vortex shedding pattern in the near wake was mainly investigated, as well as the time history of the drag and lift forces. In the investigated parameter space, three flow regimes were generally identified, corresponding to weak, moderate, and strong disturbance effects. In regime I, the wake can mainly be described by alternately shedding Kármán or Kármán-like vortices. In regime II, the spanwise vortices are obviously disturbed along the span due to the appearance of additional vorticity components and their interactions with the spanwise vortices, but still shed in synchronization along the spanwise direction. In regime III, the typical Kármán vortices partially or totally disappear, and some new vortex shedding patterns appear, such as \(\Omega \)-type, obliquely shedding, and crossed spanwise vortices with opposite sign. Corresponding to these complex vortex shedding patterns in the near wake, the fluid forces no longer oscillate regularly at a single vortex shedding frequency, but rather with a lower modulation frequency and multiple amplitudes. An overview of these flow regimes is presented.  相似文献   

17.
This paper attempts to study the roles of lateral cylinder oscillations and a uniform cross-flow in the vortex formation and wake modes of an oscillating circular cylinder. A circular cylinder is given lateral oscillations of varying amplitudes (between 0.28 and 1.42 cylinder-diameters) in a slow uniform flow stream (Reynolds number=284) to produce the 2S, 2P and P+S wake modes. Detailed flow information is obtained with time-resolved particle-image velocimetry and the phase-locked averaging techniques. In the 2S and 2P mode, the flow speeds relative to the cylinder movement are less than the uniform flow velocity and it is found that initial formation of a vortex is caused by shear-layer separation of the uniform flow on the cylinder. Subsequent development of the shear-layer vortices is affected by the lateral cylinder movement. At small cylinder oscillation amplitudes, vortices are shed in synchronization with the cylinder movement, resulting in the 2S mode. The 2P mode occurs at larger cylinder oscillation amplitudes at which each shear-layer vortex is found to undergo intense stretching and eventual bifurcation into two separate vortices. The P+S mode occurs when the cylinder moving speeds are, for most of the time, higher than the speed of the uniform flow. These situations are found at fast and large-amplitude cylinder oscillations in which the flow relative to the cylinder movement takes over the uniform flow in governing the initial vortex formation. The formation stages of vortices from the cylinder are found to bear close resemblance to those of a vortex street pattern of a cylinder oscillating in an otherwise quiescent fluid at Keulegan–Carpenter numbers around 16. Vortices in the inclined vortex street pattern so formed are then convected downstream by the uniform flow as the vortex pairs in the 2P mode.  相似文献   

18.
A numerical study is performed of flow behind a rotationally oscillating circular cylinder in a uniform flow by solving the two-dimensional incompressible Navier-Stokes equations. The flow behavior in lock-on regime and the timing of vortex formation from the oscillating cylinder are studied. When the frequency of excitation of the cylinder is in the vicinity of the natural vortex formation frequency, a lock-on vortex formation regime appears. As the excitation frequency being increased relative to the natural frequency the initially formed vorticity concentration switches to the opposite side of the cylinder. The effects of oscillating frequency and amplitude on the vortex structures formed in the near wake of the cylinder are also investigated. Based on the present calculated results, some complicated vortex patterns are identified and are consistent with the previous experimental visualizations.  相似文献   

19.
This paper investigates flow past a rotating circular cylinder at 3600?Re?5000 and α?2.5. The flow parameter α is the circumferential speed at the cylinder surface normalized by the free-stream velocity of the uniform cross-flow. With particle image velocimetry (PIV), vortex shedding from the cylinder is clearly observed at α<1.9. The vortex pattern is very similar to the vortex street behind a stationary circular cylinder; but with increasing cylinder rotation speed, the wake is observed to become increasing narrower and deflected sideways. Properties of large-scale vortices developed from the shear layers and shed into the wake are investigated with the vorticity field derived from the PIV data. The vortex formation length is found to decrease with increasing α. This leads to a slow increase in vortex shedding frequency with α. At α=0.65, vortex shedding is found to synchronize with cylinder rotation, with one vortex being shed every rotation cycle of the cylinder. Vortex dynamics are studied at this value of α with the phase-locked eduction technique. It is found that although the shear layers at two different sides of the cylinder possess unequal vorticity levels, alternating vortices subsequently shed from the cylinder to join the two trains of vortices in the vortex street pattern exhibit very little difference in vortex strength.  相似文献   

20.
This paper presents results obtained from a numerical simulation of a two-dimensional (2-D) incompressible linear shear flow over a square cylinder. Numerical simulations are performed, using the lattice Boltzmann method, in the ranges of 50⩽Re⩽200 and 0⩽K⩽0.5, where Re and K are the Reynolds number and the shear rate, respectively. The effect of the shear rate on the frequency of vortex shedding from the cylinder, and the lift and drag forces exerted on the cylinder are quantified together with the flow patterns around the cylinder. The present results show that vortex structure behind the cylinder is strongly dependant on both the shear rate and Reynolds number. When Re=50, a small K can disturb the steady state and cause an alternative vortex shedding with uneven intensity. In contrast, a large value of K will suppress the vortex shedding from the cylinder. When Re>50, the differences in the strength and size of vortices shed from the upper and lower sides of the cylinder become more pronounced as K increases. Vortex shedding disappears when K is larger than a critical value, which depends on Re. The flow patterns around the cylinder for different Re tend towards self-similarity with increasing K. The lift and drag forces exerted on the cylinder, in general, decrease with increasing K. Unlike a shear flow past a circular cylinder, the vortex shedding frequency past a square cylinder decreases with increasing the shear rate. A significant reduction of the drag force occurs in the range 0.15<K<0.3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号